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Latent variable models in ecology Latent variable models

Latent variable models in ecology

Latent (’hidden’, ’unobserved’, ...) variables are widely used in statistical ecology [PG22] to

§ account for heterogeneity

§ encode dependency

§ represent a ’true’ signal observed with noise

§ ...

Statistical perspective.

§ Nb model parameters ! Nb latent variables » Nb observed variables.

§ Inference of the model parameters much easier if the latent variables were observed.
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Latent variable models in ecology Latent variable models

Latent variable models

Notations.

§ Y “ observed variables (response),

§ Z “ unobserved (latent) variables,

§ θ “ unknown parameter (to be inferred),

§ X “ covariates (given).

General model. (frequentist setting)

§ Hidden layer: Z „ pθpZ ;X q,

§ Observed layer: Y | Z „ pθpY | Z ;X q.

observed unobserved
fix X θ
random Y Z

Graphical model.

X θ

Z

Y
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Latent variable models in ecology Latent variable models

Inference specificity

Obviously:

pθpY q “

ż

Z
pθpZqpθpY | Zq dZ

EM decomposition [DLR77]:

log pθpY q “ Erlog pθpY ,Zq | Y s ` H rpθpZ | Y qs

where H “ entropy1.

1. Still: pθpZ | Y q “ pθpY ,Zq{pθpY q.

Three typical situations:

1. Integration wrt Z can be done for free,

2. Integration wrt Z is intractable, but Eθrf pZq | Y s can be dealt with,

3. Integration wrt Z is intractable, and Eθrf pZq | Y s is inaccessible.

1Hpqq “ ´Eqrlog qpXqs
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Latent variable models in ecology Three models

Model 1: Plant pollinator networks

Species.

§ i “ 1, . . .m pollinators
= bottom nodes = rows

§ j “ 1, . . . n plants
= top nodes = columns

§ Yij existence of an interaction
between pollinator i and plant j

Yij “ Iti „ ju

Network Adjacency matrix

Network comparison. Many plant-pollinator networks are collected, to be compared across time,
space, environmental conditions, . . .

§ They each involve different sets of species

§ And networks are complex objects
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Latent variable models in ecology Three models

Model 1: Motif-based network embedding

Motif based network embedding: Replace a network with a vector of motif counts
[SROB16,SCB`19] [#48]

Network. (24 ˆ 17) Motif counts. (nodes = species) [#49]

4 nodes 5 nodes

7810 831 27977 22531 11347 901

35395 31144 14578 1096

top stars (plants) bottom stars (pollinators)

140 621 1942 4654 140 461 1153 2393
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Latent variable models in ecology Three models

Model 1: Bipartite expected degree distribution

Need for a null model. Motif counts depend on

§ the network’s dimensions (m pollinators ˆn plants),

§ the network density (number of edges),

§ the existence of generalist and specialist species.

Bipartite expected degree distribution (BEDD) [OLR22]. [#13]

§ Latent layer: Z “ pU,V q:

pUi qi“1,...m, pVj qj“1,...n iid „ Ur0, 1s

§ Observed layer: Y “ network

pYij q1ďiďm,1ďjďn indep. | Z : Yij | Ui ,Vi „ Bpρ gpUi q hpVj qq

§ Parameters: θ “ pρ, g , hq, ρ P p0, 1q, g , h : p0, 1q ÞÑ p0, 1q

ρ “ network density, g “ top node degree imbalance p
ş

g “ 1q ,
h “ bottom node degree imbalance p

ş

h “ 1q

Latent variable. Z “ pU,V q: Accounts for an heterogeneity, which is known to exist.
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S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 7 / 47



Latent variable models in ecology Three models

Model 1: Bipartite expected degree distribution

Need for a null model. Motif counts depend on

§ the network’s dimensions (m pollinators ˆn plants),

§ the network density (number of edges),

§ the existence of generalist and specialist species.

Bipartite expected degree distribution (BEDD) [OLR22]. [#13]

§ Latent layer: Z “ pU,V q:

pUi qi“1,...m, pVj qj“1,...n iid „ Ur0, 1s

§ Observed layer: Y “ network

pYij q1ďiďm,1ďjďn indep. | Z : Yij | Ui ,Vi „ Bpρ gpUi q hpVj qq

§ Parameters: θ “ pρ, g , hq, ρ P p0, 1q, g , h : p0, 1q ÞÑ p0, 1q

ρ “ network density, g “ top node degree imbalance p
ş

g “ 1q ,
h “ bottom node degree imbalance p

ş

h “ 1q

Latent variable. Z “ pU,V q: Accounts for an heterogeneity, which is known to exist.
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Latent variable models in ecology Three models

Model 2: Bat calls

Data [#22].
Overnight recording of bat calls in continuous
time

§ Can we detect changes in the distribution of
events (calls)?

§ Can we associate each time period with
some underlying behavior?

Specificity.

§ Bat calls are emitted in bursts (clusters).
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Latent variable models in ecology Three models

Model 2: Markov-switching Hawkes process

Discrete-time Hawkes process pYk qkě1. Yk “ number of events in the k-th time bin:

Yk | pYℓqℓďk´1 „ P

˜

µ ` α
k´1
ÿ

ℓ“1

βℓ´1Yk´ℓ

¸

§ µ “ immigration rate, α, β “ influence of the past events (self-exciting).

§ InAR process [Kir16], which converges to Hawkes process with exponential kernel. [#53]

Markov switching Hawkes process [BR25].

§ Hidden path pZk qkě1 “ homogeneous Markov chain with Q states

pZk qkě1 „ MCQpν, πq;

§ Observed counts: for k ě 1 and

pYk | pYℓqℓďk´1,Zk “ qq „ P

˜

µq ` α
k´1
ÿ

ℓ“1

βℓ´1Yk´ℓ

¸

;

Latent variable. Encodes the behavior of the animal(s).
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Latent variable models in ecology Three models

Model 3: Joint species distribution model

Species distribution model (SDM). Which conditions favour or hinder a given species?

§ i “ 1 . . . n sites

§ xi “ covariates describing the environment in site i

§ Yi “ abundance (ie number of individual) of the species of interest in site i

§ SDM = univariate generalized (mixed) (linear) model:

Yi „ Fp¨; xi , θq.

Joint species distribution model (JSDM). Which condition favour or hinder a set of species and
how do they ’interact’?

§ j “ 1 . . . p species

§ Yij “ abundance of species j in site i , Yi “ pYi1, . . .Yipq abundance vector in site i

§ JSDM = multivariate generalized (mixed) (linear) model:

Yi „ Fp¨; xi , θq.

Specificity.

§ Yi is a count vector.

§ Not that many flexible multivariate distributions for counts on the shelf [IYAR17].
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S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 10 / 47



Latent variable models in ecology Three models

Model 3: Poisson log-normal distribution

Most JSDM resort to a Gaussian latent structure [WBO`15,OA20] to encode the dependence
between species.

Poisson log-normal model [AH89,CMR21].

§ Latent layer:
pZi q1ďiďn iid „ Npp0,Σq

§ Observed layer: counts pYij q1ďiďn,1ďjďp indep | Z

Yij | Z „ P
´

exppxJ
i βj ` Zij q

¯

§ Parameters θ “ pβ,Σq:

βj “ effects of the environmental covariates on species j (abiotic interactions)

Σ “ between-species latent covariance matrix (biotic interactions)

Latent variable. Encodes between-species dependencies in a mathematically convenient way.
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1 - Motifs in plant-pollinator networks

Outline

1 - Motifs in plant-pollinator networks
Motif count distribution
Networks comparison in space and time

2 - Markov switching Hawkes process & Bat calls
A hidden Markov model?
Bats calls sequences

3 - Joint species distribution model
From EM to variational EM to Monte-Carlo EM
Fish species from the Barents sea
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1 - Motifs in plant-pollinator networks Bipartite expected degree distribution

Bipartite expected degree distribution
h0pvq “ hpvq “

Ui ,Vj „ Ur0, 1s

Yij „ Bpρ gpUi q hpVj qq
ş

g “
ş

h “ 1

g0puq “

gpuq “

§ No preferred or avoided specific connexion

§ Graph-exchangeable model: pollinators (and plants) can be permuted

§ Bipartite version of the expected degree distribution [CL02]

§ Expected degrees: EpYi` | Ui q “ nρgpUi q, EpY`j | Vj q “ mρhpVj q. [#7]
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S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 13 / 47



1 - Motifs in plant-pollinator networks Motif count distribution

Motif count

Couting motifs2. For a given motif s with ps top nodes and qs bottom nodes:

§ Determine the rs automorphisms = non-redundant permutations

§ Choose ps nodes among m and qs nodes among n;

§ The number of possible ’positions’ is then

cs :“

ˆ

m
ps

˙

ˆ

ˆ

n
qs

˙

ˆ rs ;

§ Try all positions α “ 1, . . . cs , and count the number of matches:

Ns “

cs
ÿ

α“1

Itmotif s matches at position αu.

Expected count. EpNsq “ csϕs , with

ϕs “ matching probability “ ’motif probability’

2Not in the way of the bmotif package [SSS`19]
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1 - Motifs in plant-pollinator networks Motif count distribution

Motif probability

Motif probability ϕs under BEDD3. Need to integrate wrt Z “ pU,V q.

An example. Consider the motif s “ with ps “ 2 and qs “ 3, we have

ϕs “

ż

¨ ¨ ¨

ż

ρ4gpu1qgpu2q3hpv1qhpv2qhpv3q2 du1 du2 dv1 dv2 dv3

“

ˆ
ż

ρ3gpu2q3 du2

˙ ˆ
ż

ρ2hpv3q2 dv3

˙N

ρ r#50s

“ pbottom 3-star probabilityq ˆ ptop 2-star probabilityq { pedge probabilityq

A favourable configuration.

§ Edge and star probabilities contain all information.

§ Unbiased estimates are given by their respective empirical frequencies F “ N{c
(sufficient statistics of the BEDD model).

§ The integration wrt Z “ pU,V q is implicitly achieved (without estimating g and h).

3Consider here induced motifs (only the presence of the prescribed edges is required) ‰ exact motif
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1 - Motifs in plant-pollinator networks Motif count distribution

Some more results

Moments of the count.
§ Mean: EpNsq “ cs ˆ ϕs

§ Variance: Same game, requires to evaluate EpN2
s q “ E

`
ř

α matchsα
˘2

Ñ Need to consider overlaps between positions (super-motifs: [PDK`08] [#51])

Ñ Compute the respective expected count in the way as for other motifs

§ Covariance: Same game to compute CovpNs ,Ns1 q

Proposition: Asymptotic normality [OLR22].4 Under BEDD, for non-star motifs,
§ Under sparsity conditions (ρ 9 m´an´b):

pNs ´ pEpNsqq

N

b

pVpNsq
m,nÑ8

ÝÑ N p0, 1q

§ Account for plug-in when moderate network size (∆-method):

´

Ns ´ pEpNsq ` pB
´

pEpNsq

¯¯

N

b

pVpNs ´ pEpNsqq
m,nÑ8

ÝÑ N p0, 1q

4Motif counts are also network U-statistics [LM23,LMDMR25]
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1 - Motifs in plant-pollinator networks Networks comparison in space and time

Model 1: Networks comparison in space and time
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1 - Motifs in plant-pollinator networks Networks comparison in space and time

French plant-pollinator networks

Joint work with Natasha de Manincor et François Massol

Question. Does the structure of plant-pollinator network vary in space and time?

Design.

§ 3 French regions (Hauts-de-France, Normandie and Occitanie), 2 sites / region

§ 2 years, 7 months / year

§ 3 ˆ 2 ˆ 2 ˆ 7 » 82 networks

Approach. Distance-based embedding:

§ Define a network distance (gathering all motifs)

§ Use (permutation-based) multivariate analysis of variance to test spatial or temporal effects
(’Adonis’, [MA01,ZS06])

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 18 / 47



1 - Motifs in plant-pollinator networks Networks comparison in space and time

French plant-pollinator networks

Joint work with Natasha de Manincor et François Massol

Question. Does the structure of plant-pollinator network vary in space and time?

Design.

§ 3 French regions (Hauts-de-France, Normandie and Occitanie), 2 sites / region

§ 2 years, 7 months / year

§ 3 ˆ 2 ˆ 2 ˆ 7 » 82 networks

Approach. Distance-based embedding:

§ Define a network distance (gathering all motifs)

§ Use (permutation-based) multivariate analysis of variance to test spatial or temporal effects
(’Adonis’, [MA01,ZS06])
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1 - Motifs in plant-pollinator networks Networks comparison in space and time

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Test statistic.

§ Assume A „ BEDDpρA, gA, hAq and B „ BEDDpρB , gB , hBq

H0 “ tgA “ gBu

§ For motif s, with

pE0pNA
s q “ pE

pρA,pgB ,phA
pNA

s q, pE0pNB
s qq “ pE

pρB ,pgA,phB
pNB

s q

we have

W
pgq
s pA,Bq “

pNA
s ´ pE0pNA

s qq ´ pNB
s ´ pE0pNB

s qq
b

pV0pNA
s q ` pV0pNB

s q

H0
„ N p0, 1q

Network ’distance’ for pollinator imbalance

DpgqpA,Bq “

d

ÿ

s

W
pgq
s pA,Bq2
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1 - Motifs in plant-pollinator networks Networks comparison in space and time

Results

Pollinator imbalance Dpgq. Adonis anova table

Df Sum Of Sqs R2 F Pr( F)
InsectNb 1 69.9 0.2595 42.69 1e-05
PlantNb 1 31.17 0.1157 19.04 1e-05
Year 1 2.66 0.0099 1.62 0.22212
Month 6 24.8 0.092 2.52 0.00959
Region 2 8.67 0.0322 2.65 0.04531
Year:Month 6 4.81 0.0179 0.49 0.88756
Year:Region 2 5.51 0.0204 1.68 0.1787
Month:Region 12 32.41 0.1203 1.65 0.06346
Year:Month:Region 12 27.26 0.1012 1.39 0.15884
Residual 38 62.22 0.2309
Total 81 269.42 1

§ Because of small network sizes, need to correct for the number of insects and plants

§ Significant effect of the region and the month, indicating changes of the insect imbalance
both in space and time

§ The pattern is conserved from year to the next (not year effect)

§ No significant effect found for the plant imbalance distance Dphq
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§ The pattern is conserved from year to the next (not year effect)

§ No significant effect found for the plant imbalance distance Dphq
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2 - Markov switching Hawkes process & Bat calls

Outline

1 - Motifs in plant-pollinator networks
Motif count distribution
Networks comparison in space and time

2 - Markov switching Hawkes process & Bat calls
A hidden Markov model?
Bats calls sequences

3 - Joint species distribution model
From EM to variational EM to Monte-Carlo EM
Fish species from the Barents sea
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Discrete time Markov-switching Hawkes process

Data [#8]. Yk “ number of bat calls during the k-th time bin.

Markov switching Hawkes process model. In discrete time:

§ Hidden path pZk qkě1 “ homogeneous Markov chain with Q states

pZk qkě1 „ MCQpν, πq

ν “ intial distribution, π “ transition matrix;

§ Observed counts: for k ě 1 and

pYk | pYℓqℓďk´1,Zk “ qq „ P

˜

µq ` α
k´1
ÿ

ℓ“1

βℓ´1Yk´ℓ

¸

;

§ Model parameters: θ “ pν, π, µ, α, βq

Proposition: Identifiability [BR25]5.

§ The model parameter θ is identifiable from the joint distribution of pY1,Y2,Y3q.
(θ ‰ θ1 ñ pθp¨, ¨, ¨q ‰ pθ1 p¨, ¨, ¨q)

5The proof does not rely on [AMR09]
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S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 22 / 47



2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (homogeneous case)

Homogeneous discrete-time Hawkes process Y “ tYkukě1.

Yk | pYℓqℓďk´1 „ P

˜

µ ` α
k´1
ÿ

ℓ“1

βℓ´1Yk´ℓ

¸

pYk qkě1 is not a Markov chain (because of infinite memory).

Markovian representation.

§ Define

U1 “ 0, Uk “ α
k

ÿ

ℓ“1

βℓ´1Yk´ℓ,

§ then, for k ě 1 (with U0 “ Y0 “ 0)

Uk “ αYk´1 ` βUk´1, Yk | Uk „ Ppµ ` Uk q.

so ppYk ,Uk qqkě1 forms a Markov chain.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (Markov switching case)

Markov switching Hawkes process model. Can be rephrased as

pYk | pYℓqℓďk´1,Zk “ qq „ P pµq ` Uk q

with

U1 “ 0, Uk “ α
k

ÿ

ℓ“1

βℓ´1Yk´ℓ,

Consequence.

§ The model is a regular Hidden Markov Model (HMM) with graphical model

Zk´1 Zk Zk`1

Uk´1 Uk Uk`1 Uk`2

Yk´1 Yk Yk`1

pZk qkě1 “ hidden path, pUk qkě1 “ memory, pYk qkě1 “ observed process.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Inference

Maximum likelihood inference: pθ “ argmaxθ log pθpY q

EM algorithm for HMM: [DLR77,CMR05]

θph`1q “ argmax
θ

looomooon

M step

Eθphq
loomoon

E step

rlog pθpY ,Zq | Y s

§ E step: Evaluate Qpθ | θphqq “ Eθphq rlog pθpY ,Zq | Y s (forward-backward recursion)

§ M step: Gradient ascent, computing ∇θQpθ | θphqq by recursion

Model selection. Penalized likelihood

AICQ “ log p
pθQ

pY q ´ DQ , BICQ “ log p
pθQ

pY q ´ DQ
logpNq

2

with DQ “ number of parameters “ 2 ` Q2 and N “ number of time bins.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Simulation study (not shown)

Design.

1. Simulate a continuous time Markov-switching Hawkes process

2. With more or less events (control parameter λ)

3. Then discretise with more or less bins (control parameter N 9 nb events)

Conclusions.

§ Inference more accurate when more signal (large λ)!!! [#54]

§ Inference more accurate with thinner discretization step (large N)
But at the price of a higher computational cost [#56]

§ BIC does not capture the right number of states
Sequences not simulated according to the model

§ AIC does, when enough signal (λ) and discretization (N)
Blind to the simulation shift from the model? [#55]

Practical recommendations: Take N “ 2n and use AIC to choose Q.
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2 - Markov switching Hawkes process & Bat calls Bats calls sequences

Model 2: Bats calls sequences
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2 - Markov switching Hawkes process & Bat calls Bats calls sequences

Vigie-chiro project

Data set.

§ Vigie-chiro project French participatory project to monitor bats echolocation calls
(https://www.vigienature.fr/fr/chauves-souris).

§ 2354 overnight recordings collected between October 2010 and January 2020 in 755
locations.

§ Restricted to sequences with at least 50 calls Ñ 1555 time sequences.

Poisson vs Hawkes / Homogeneous vs HMM. Best model according to AIC6

Poisson Hawkes Total
Homogeneous 34 353 387

Hidden Markov 24 1144 1168
Total 58 1497 1555

§ Memory (95%) and heterogeneity (75%) are present in most sequences

§ Hawkes-HMM best fits almost 3 sequences out of 4.

6BIC: Poisson = 153 (homo = 132, HMM = 21), Hawkes = 1402 (homo = 775, HMM = 627).
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2 - Markov switching Hawkes process & Bat calls Bats calls sequences

An example

Conditionally most probable states. (MAP)

Hawkes HMM ( pQ “ 3) Poisson HMM ( pQ “ 4)

§ Interpretation of the states: absence of calls, transit and foraging (high call frequency)

§ Hawkes-HMM state changes do not correspond to slope changes

§ Poisson-HMM needs many state changes to account for self-excitation
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2 - Markov switching Hawkes process & Bat calls Bats calls sequences

States and species

The number of bat species was also recorded each night in each site.
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§ The number of states does not match the number of species

§ More discussion to come with members of the Vigie-chiro project
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3 - Joint species distribution model

Outline

1 - Motifs in plant-pollinator networks
Motif count distribution
Networks comparison in space and time

2 - Markov switching Hawkes process & Bat calls
A hidden Markov model?
Bats calls sequences

3 - Joint species distribution model
From EM to variational EM to Monte-Carlo EM
Fish species from the Barents sea
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Joint species distribution model

Data. n sites, p species,

§ xi “ vector of covariates for site i ,

§ Yi “ pYi1, . . .Yipq “ abundance vector in site i .

Poisson log-normal (PLN) model.

§ Latent layer:
pZi q1ďiďn iid „ Npp0,Σq;

§ Observed layer: counts pYij q1ďiďn,1ďjďp indep | Z

Yij | Z „ P
´

exppoij ` xJ
i βj ` Zij q

¯

,

oij “ given ’offset’ term, accounting for the sampling effort;

§ Parameters θ “ pβ,Σq:

βj “ abiotic interactions, Σ “ biotic interactions.
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

An example

A typical dataset.

§ Fish species from the Barents sea [FNA06],

§ n “ 89 sites, p “ 30 species, d “ 4 covariates (latitude, longitude, temperature, depth).

Importan aim of JSDM: Distinguish between abiotic and biotic effects:

Covariate effects Correlation induced Between species

( pB) by the environment correlation (pΣ)
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]

θph`1q “ argmax
θ

looomooon

M step

Eθphq
loomoon

E step

rlog pθpY ,Zq | Y s

§ The E step requires some knowledge about pθpZ | Y q, which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].

§ Choose a class Q of approximate (parametric) distributions and a divergence measure
Drq}ps (e.g. KLrq}ps)

§ VE step (approximation): qph`1q “ argminqPQ D
“

qpZq}pθphq pZ | Y q
‰

§ M step (update): θph`1q “ argmaxθ Eqph`1q rlog pθpY ,Zqs

§ If D “ KL, a lower bound of log pθpY q (’ELBO’) increases at each step
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the PLN model.

Variational EM [WJ08,BKM17].

§ Choose a class Q of approximate (parametric) distributions and a divergence measure
Drq}ps (e.g. KLrq}ps)

§ VE step (approximation): qph`1q “ argminqPQ D
“

qpZq}pθphq pZ | Y q
‰

§ M step (update): θph`1q “ argmaxθ Eqph`1q rlog pθpY ,Zqs

§ If D “ KL, a lower bound of log pθpY q (’ELBO’) increases at each step
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

VEM for the Poisson log-normal model

Approximation class. Gaussian approximation [CMR18,CMR19]

qpZq “

n
ź

i“1

N pZi ;mi , Si q

§ Parameter estimate pθ “ ppΣ, pβq,

§ Approximate conditional distribution Zi | Yi « N p rmi , rSi q,

§ Lower bound ELBOppθ, rm, rSq (R package PLNmodels)

Variational inference.

§ Reasonably easy to implement, fast, empirically accurate

§ Very few theoretical guaranties: no general properties as for maximum likelihood
(consistency, asymptotic normality, etc.)

Ñ No measure of uncertainty (no test, no confidence interval)

§ Can we build upon variational inference to achieve ’genuine’ statistical inference?
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Toward genuine maximum likelihood inference [SR24]

Monte Carlo EM (MCEM). [CD85] When ppZ | Y q can be sampled from:

§ MCE step: Sample pZmqm“1...M
iid
„ pθphq pZ | Y q, then estimate

pQpθ | θphqq :“
1

M

M
ÿ

m“1

log pθpY ,Zmq

§ M step: Update
θph`1q “ argmax

θ

pQpθ | θphqq

Importance sampling. When ppZ | Y q can not be sampled from:

§ Sample pZmqm“1...M
iid
„ qphqpZq, qphq “ proposal,

§ Compute the non-normalized weights ρ
phq
m “ pθphq pY ,Zmq

L

qphqpZmq ,

§ Estimate

pQpθ | θphqq :“
M
ÿ

m“1

ρ
phq
m log pθpY ,Zmq

O

M
ÿ

m“1

ρ
phq
m ,
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Composite likelihood

Importance sampling has a poor efficiency7 in ’large’ dimension (say p ě 10, 15)

Ñ Need to reduce the sampling dimension

Composite likelihood.

§ Build B overlapping blocks C1, . . . CB , each containing k species,

§ Define the composite log-likelihood as

cℓθpY q “

B
ÿ

b“1

log pθpY bq, where Y b “ rYij si“1,...n,jPCb
,

§ Then, the maximum composite likelihood estimator [VRF11]

pθCL “ argmax
θ

cℓθpY q

is consistent, asymptotically Gaussian with asymptotic variance given by

Jpθq “ Vθr∇θcℓθpY qs, Hpθq “ ´Eθr∇2
θcℓθpY qs,

V8ppθCLq “ H´1pθqJpθqH´1pθq.

7Measured in terms of ESS » variance of the weights
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Proposed composite likelihood algorithm

Proposition: EM applies to composite likelihood [SR24].

§ Because the latent variables Z can be split in the same way as the observed abundances Y :

Zb “ rZij si“1,...n,jPCb
,

§ The EM decomposition applies within each block.

Proposal for importance sampling.

§ Start with q
p1q

b pZbq “ rqVEMpZbq,

§ Then update q
ph`1q

b pZbq with the estimated mean and variance of pθphq pZb | Y bq.

Building the blocks. To guaranty the same precision for all estimates, one would ideally want that

βj : each species j belongs to the same number of blocks C1, . . . CB ,
σjj1 : each pair of species pj , j 1q appears in the same number of blocks.

§ Same problem as the construction of a incomplete balanced block design8 [#58]

8Not always possible: e.g., need to have p | Bk and ppp ´ 1q | Bkpk ´ 1q
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

Simulation study

Main aim. Assess normality

§ Test statistic ppθ ´ θ˚q

N

b

pV8ppθq for the regression coefficients

§ Criterion = p-value of the Kolmogorov-Smirnov test for normality

§ Effect of the block size on the variance of the estimates (actually small [#59])

Results. 100 sites, 3 covariates, 100 simulations

7 species 10 species 20 species 50 species

FL = full likelihood, CLk = composite likelihoodpk “ 2, 3, 5, 7q,

VEM = pseudo Fisher information matrix based on the ELBO,
JK = jackknife variance estimate of VppθVEMq
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3 - Joint species distribution model Fish species from the Barents sea

Model 3: Fish species from the Barents sea

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 40 / 47



3 - Joint species distribution model Fish species from the Barents sea

Fish species in the Barents sea

Comparison of the estimates.

pB pΣ ESS (CL5)

Significance. Test statistics pθ

N

b

pV8ppθq

pB pΣ corppΣq
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Conclusion

To conclude
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Conclusion

Summary

Latent variable models.

§ They are ubiquite in statistiscal ecology,

§ For various modelling purposes (inferring Z is critical in Model 2, not in Models 1 and 3),

§ Latent variables mays play different roles, from almost mechanistic to purely instrumental.

Inference: No big picture.

§ Dealing with latent variable yields specific difficulties, ranging from trivial to intractable,

§ Often model-dependant, requiring specific developments,

§ Still some generic questions (e.g. safely replace EM with gradient ascent?).
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Conclusion

Discussion (some home works ?)

1 - Network motifs (plant-pollinator)

a - No clear understanding of the information brought by each motif;

b - (Asymptotic) normality does not hold for the networks at hand [#52]

(Could explain the poor power of the tests?).

c - BEDD is not consistent with the actual sampling process of the network;

2 - Hawkes hidden Markov model (bats calls)

a - The Markovian representation also holds for non-exponential kernels [#57];

b - No theoretical problem to define a continuous time version of the proposed model
(but many practical ones);

c - A proper model selection criterion accounting for the discretization step is still needed.

3 - Poisson log-normal (species abundances)

a - Account for the ’excess’ of null abundances [BCGM24];

b - Could we say more about the properties of VEM estimates?

c - The expression of pθpZ | Y q is hugly, but the function is actually very regular
Ñ Could we ’learn’ a deterministic transformation allowing, say, to sample from it?
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1 - Network motifs

Network embedding: Zackenberg’s data [SROB16]

Raw counts

Normalized counts Choleski Bray-Curtis MDS
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1 - Network motifs

Network embedding: Zackenberg’s data [SROB16]

Raw counts Normalized counts
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1 - Network motifs

Network embedding: Zackenberg’s data [SROB16]

Raw counts Normalized counts Choleski

Bray-Curtis MDS
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1 - Network motifs

Network embedding: Zackenberg’s data [SROB16]

Raw counts Normalized counts Choleski Bray-Curtis MDS
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1 - Network motifs

Bipartite motifs

’Meso-scale’ analysis. [SCB`19]

§ Motifs =’building-blocks’

§ between local (several nodes) and
global (sub-graph)

Interest.

§ Generic description of a network

§ Enables network comparison

§ Even when the nodes are different

(` ’species-role’: out of the scope here)
[#6]

Existing tool. bmotif package [SSS`19]: counts motif occurrences (Not an easy task!)
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bmotif


1 - Network motifs

Motif probability

Occurrence probability ϕs “ PtYsα “ 1u. Under the B-EDD model [OLR22]:
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pϕ1ϕ4q
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r#49s

Estimated probability F s . [#15]

ϕs :“
ϕ2ϕ4

ϕ1
Ñ F s :“

F2F4

F1

where F1, F2, F4 “ observed frequencies of edges, top stars and bottom stars.
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1 - Network motifs

Super-motifs

Motif:

Variance:

N2
s “

˜

ÿ

α

Ysα

¸2

“
ÿ

α,β:αXβ“H

YsαYsβ

`
ÿ

α,β:αXβ‰H

YsαYsβ
looomooon

occurrence of
a super-motif

Some super-motifs:

. . . 396 super-motifs

Covariance: same game, for YsαYs1β with s ‰ s 1 [#16]

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli’25 51 / 47



1 - Network motifs

In practice: Asymptotic normality

(n “ 2m{3) m “ 50 m “ 100 m “ 200
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Normal distribution, Poisson-geometric distribution with same mean and variance [Sta01,PDK`08]

[#16] [#44]
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2 - Hawkes discrete HMM

Self-exciting exponential Hawkes process

λptq “ λ0 ` a
ÿ

Tkăt

e´bpt´Tk q

Self exciting: Each event increases the probability of observing another event

§ Exponential kernel function hptq “ ae´bt

§ a ě 0 to ensure that λ is non negative

§ a{b ă 1 to ensure stationarity

§ Applications: sismology, epidemiology,
vulcanology, neurosciences, ecology, ... [#9]
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2 - Hawkes discrete HMM

Simulations: estimation

[#26]
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2 - Hawkes discrete HMM

Simulations: model selection

[#26]
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2 - Hawkes discrete HMM

Simulations: classification and computational time

[#26]
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2 - Hawkes discrete HMM

Non exponential kernel function h

Compact support. Suppose that h has no exponential form, but

t ą L∆ ñ hptq “ 0.

Homogeneous discrete Hawkes process.

`

Yk | Y1:pk´1q

˘

„ P

˜

µ `

k´1
ÿ

ℓ“1

αℓYk´ℓ

¸

with αℓ “

ż ℓ∆

pℓ´1q∆
hptq dt.

Markovian representation. Define Uk “
ř

ℓě1 αℓYk´ℓ, then

`

Yk | Y1:pk´1q

˘

“ pYk | Uk q „ P pµ ` Uk q

and ppYk ,Uk qqkě1 forms a Markov chain (of order L). [#44]
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3 - Poisson log-normal model

Number of block for composite likelihood

[#38]
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3 - Poisson log-normal model

Effect of the block size on the variance

[#39]
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