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Latent variable models in ecology

Latent ("hidden’, 'unobserved’, ...) variables are widely used in statistical ecology [PG22] to

> account for heterogeneity
> encode dependency

> represent a 'true’ signal observed with noise

>
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Latent variable models in ecology

Latent ("hidden’, 'unobserved’, ...) variables are widely used in statistical ecology [PG22] to

> account for heterogeneity
> encode dependency

> represent a 'true’ signal observed with noise

>

Statistical perspective.

> Nb model parameters « Nb latent variables ~ Nb observed variables.

*> Inference of the model parameters much easier if the latent variables were observed.
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Latent variable models

Notations.
> Y = observed variables (response),
» Z = unobserved (latent) variables,
> 0 = unknown parameter (to be inferred),

> X = covariates (given).
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Latent variable models

Notations.
> Y = observed variables (response),
» Z = unobserved (latent) variables,
> 0 = unknown parameter (to be inferred),

> X = covariates (given).

General model. (frequentist setting) Graphical model.

> Hidden layer: Z ~ py(Z; X), ﬂ
> Observed layer: Y | Z ~ pg(Y | Z; X).

‘ observed  unobserved
fix X 6

random Y V4 a
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Inference specificity

Obviously:
po(Y) = L Po(Z)po(Y | Z) dZ

1
H(q) = —Eq[log q(X)]
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po(Y) = L po(Z)pe(Y | Z) dZ

EM decomposition [DLR77]:
log po(Y) = Ellog po(Y, 2) | Y]+ H[pe(Z | V)]

where H = entropy!.
L. Still: po(Z | Y) = po(Y,Z)/pa(Y).

Three typical situations:

1. Integration wrt Z can be done for free,

2. Integration wrt Z is intractable, but Eg[f(Z) | Y] can be dealt with,

1
H(q) = —Eq[log 9(X)]
S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25

4/47



Latent variable models in ecology ~ Latent variable models

Inference specificity

Obviously:
po(Y) = L po(Z)pe(Y | Z) dZ

EM decomposition [DLR77]:
log po(Y) = Ellog po(Y, 2) | Y]+ H[pe(Z | V)]

where H = entropy!.
L. Still: po(Z | Y) = po(Y,Z)/pa(Y).

Three typical situations:
1. Integration wrt Z can be done for free,

2. Integration wrt Z is intractable, but Eg[f(Z) | Y] can be dealt with,

3. Integration wrt Z is intractable, and Eg[f(Z) | Y] is inaccessible.

1
H(q) = —Eq[log 9(X)]
S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25

4/47



Latent variable models in ecology =~ Three models

Model 1: Plant pollinator networks
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Latent variable models in ecology ~ Three models

Model 1: Plant pollinator networks

Species. Adjacency matrix

» i =1,...m pollinators
= bottom nodes = rows

» j=1,...n plants
= top nodes = columns

> Y existence of an interaction
between pollinator / and plant j

W

N

Yy =i ~j}
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Latent variable models in ecology ~ Three models

Model 1: Plant pollinator networks

Species. Adjacency matrix

» i =1,...m pollinators
= bottom nodes = rows

» j=1,...n plants
= top nodes = columns

> Y existence of an interaction
between pollinator / and plant j

W

N

Yij =I{i ~j}

Network comparison. Many plant-pollinator networks are collected, to be compared across time,
space, environmental conditions, ...

> They each involve different sets of species

> And networks are complex objects
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Latent variable models in ecology =~ Three models

Model 1: Motif-based network embedding

Motif based network embedding: Replace a network with a vector of motif counts
[SROB16,SCB ™ 19] [#48]
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Latent variable models in ecology ~ Three models

Model 1: Motif-based network embedding

Motif based network embedding: Replace a network with a vector of motif counts
[SROB16,SCB™19] [#:48]

Network. (24 x 17) Motif counts. (nodes = species) [#49]

4 nodes 5 nodes
N B W W %
2539§ 21144 1457§ 109

top stars (plants) | bottom stars (pollinators)
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Latent variable models in ecology =~ Three models

Model 1: Bipartite expected degree distribution

Need for a null model. Motif counts depend on
> the network’s dimensions (m pollinators xn plants),
> the network density (number of edges),

> the existence of generalist and specialist species.
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Bipartite expected degree distribution (BEDD) [OLR22]. [#13]
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Need for a null model. Motif counts depend on
> the network’s dimensions (m pollinators xn plants),
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Bipartite expected degree distribution (BEDD) [OLR22]. [#13]
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Model 1: Bipartite expected degree distribution

Need for a null model. Motif counts depend on
> the network’s dimensions (m pollinators x n plants),
> the network density (number of edges),

> the existence of generalist and specialist species.
Bipartite expected degree distribution (BEDD) [OLR22]. [#13]
> Latent layer: Z = (U, V):
(UDi=1,...m» (V})j=1,...n iid ~U[0,1]
> Observed layer: Y = network
(Yi)igismigj<n indep. | Z Y | Up, Vi ~ B(p g(U;) h(V)))
> Parameters: 6 = (p,g,h), p€ (0,1), g, h: (0,1) — (0,1)
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Need for a null model. Motif counts depend on
> the network’s dimensions (m pollinators x n plants),
> the network density (number of edges),

> the existence of generalist and specialist species.
Bipartite expected degree distribution (BEDD) [OLR22]. [#13]
> Latent layer: Z = (U, V):
(UDi=1,...m» (V})j=1,...n iid ~U[0,1]
> Observed layer: Y = network
(Yi)igismigj<n indep. | Z Y | Up, Vi ~ B(p g(U;) h(V)))
> Parameters: 6 = (p,g,h), p€ (0,1), g, h: (0,1) — (0,1)

= network density, g = top node degree imbalance ({g =1),
h = bottom node degree imbalance ({h=1)

Latent variable. Z = (U, V): Accounts for an heterogeneity, which is known to exist.
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Latent variable models in ecology =~ Three models

Model 2: Bat calls

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25 8/47



Latent variable models in ecology ~ Three models

Model 2: Bat calls
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Model 2: Bat calls

Data [#22].
Overnight recording of bat calls in continuous
time

» Can we detect changes in the distribution of
events (calls)?
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Latent variable models in ecology ~ Three models

Model 2: Bat calls

Data [#22].
Overnight recording of bat calls in continuous
time

» Can we detect changes in the distribution of
events (calls)?

» Can we associate each time period with
some underlying behavior?

Specificity.
> Bat calls are emitted in bursts (clusters).
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Latent variable models in ecology =~ Three models

Model 2: Markov-switching Hawkes process

Discrete-time Hawkes process (Yy)x>1. Yk = number of events in the k-th time bin:

k—1
Yicl (Ye)e<k—1 ~ P (M +ay ﬁelYkz>

=1

> 1 = immigration rate, o, 3 = influence of the past events (self-exciting).

> InAR process [Kirl6], which converges to Hawkes process with exponential kernel. [#53]
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=1

> 1 = immigration rate, o, 3 = influence of the past events (self-exciting).

> InAR process [Kirl6], which converges to Hawkes process with exponential kernel. [#53]

Markov switching Hawkes process [BR25].
> Hidden path (Zx)k>1 = homogeneous Markov chain with Q states

(Zk)k=1 ~ MCq(v,7);
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Model 2: Markov-switching Hawkes process

Discrete-time Hawkes process (Yy)x>1. Yk = number of events in the k-th time bin:

k—1
Yicl (Ye)e<k—1 ~ P (M +ay ﬁelYkz>

=1

> 1 = immigration rate, o, 3 = influence of the past events (self-exciting).

> InAR process [Kirl6], which converges to Hawkes process with exponential kernel. [#53]
Markov switching Hawkes process [BR25].
> Hidden path (Zx)k>1 = homogeneous Markov chain with Q states
(Zk)k=1 ~ MCq (v, T);
> Observed counts: for k > 1 and

k—1
(Y | (Yo)esk—1,Zk =) ~P (Hq +ay ﬂelYkz> ;
=1

Latent variable. Encodes the behavior of the animal(s).
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Latent variable models in ecology =~ Three models

Model 3: Joint species distribution model
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Latent variable models in ecology ~ Three models

Model 3: Joint species distribution model

Species distribution model (SDM). Which conditions favour or hinder a given species?
> i=1...nsites
> x; = covariates describing the environment in site i
" Y

> SDM = univariate generalized (mixed) (linear) model:

abundance (ie number of individual) of the species of interest in site i

Yi ~ F(xi,0).
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Latent variable models in ecology ~ Three models

Model 3: Joint species distribution model

Species distribution model (SDM). Which conditions favour or hinder a given species?
» i =1...n sites
> Xxj = covariates describing the environment in site i
> Y; = abundance (ie number of individual) of the species of interest in site i

> SDM = univariate generalized (mixed) (linear) model:

Yi ~ F(:x,0).

Joint species distribution model (JSDM). Which condition favour or hinder a set of species and
how do they 'interact’?

> j=1...p species
> Y} = abundance of species j in site i, Y; = (Yj1,... Yj,) abundance vector in site i
> JSDM = multivariate generalized (mixed) (linear) model:

Y; ~ F( x;,0).
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Model 3: Joint species distribution model

Species distribution model (SDM). Which conditions favour or hinder a given species?
» i =1...n sites
> Xxj = covariates describing the environment in site i
> Y; = abundance (ie number of individual) of the species of interest in site i

> SDM = univariate generalized (mixed) (linear) model:

Yi ~ F(xi,0).

Joint species distribution model (JSDM). Which condition favour or hinder a set of species and
how do they 'interact’?

> j=1...p species
> Y} = abundance of species j in site i, Y; = (Yj1,... Yj,) abundance vector in site i
> JSDM = multivariate generalized (mixed) (linear) model:

Y; ~ F( x;,0).

Specificity.
> Y; is a count vector.

> Not that many flexible multivariate distributions for counts on the shelf [IYAR17].
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Latent variable models in ecology =~ Three models

Model 3: Poisson log-normal distribution

Most JSDM resort to a Gaussian latent structure [WBO™ 15 0A20] to encode the dependence
between species.
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> Latent layer:
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> Observed layer: counts (Yjj)i<i<n,1<j<p indep | Z
Y| Z~ P (explx 8+ Zy))
> Parameters 0 = (3,%):

B
s

effects of the environmental covariates on species j (abiotic interactions)

between-species latent covariance matrix (biotic interactions)
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Model 3: Poisson log-normal distribution

Most JSDM resort to a Gaussian latent structure [WBO™ 15 0A20] to encode the dependence
between species.

Poisson log-normal model [AH89,CMR21].

> Latent layer:
(Zi)i<i<n iid ~ Np(0,X)

> Observed layer: counts (Yjj)i<i<n,1<j<p indep | Z
Y| Z~ P (explx 8+ Zy))
> Parameters 0 = (3,%):

B
s

effects of the environmental covariates on species j (abiotic interactions)

between-species latent covariance matrix (biotic interactions)

Latent variable. Encodes between-species dependencies in a mathematically convenient way.
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1 - Motifs in plant-pollinator networks

Outline

1 - Motifs in plant-pollinator networks
Motif count distribution
Networks comparison in space and time

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25 12 /47



1 - Motifs in plant-pollinator networks  Bipartite expected degree distribution

Bipartite expected degree distribution
ho(v) = h(v) =

Ui, V; ~ U[0, 1]
Yii ~ B(p g(Ui) h(V)))
fg=fh=1

go(u) =

g(u) =
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1 - Motifs in plant-pollinator networks  Bipartite expected degree distribution

Bipartite expected degree distribution
ho(v) = h(v) =

Ui, V; ~ U[0, 1]
Yii ~ B(p g(Ui) h(V)))
fg=fh=1

go(u) =

g(u) =

> No preferred or avoided specific connexion

> Graph-exchangeable model: pollinators (and plants) can be permuted

> Bipartite version of the expected degree distribution [CL02]

> Expected degrees: E(Yiy | Uj) = npg(U;), E(Yyj | V) = mph(V;). [#7]
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Motif count

Couting motifs?. For a given motif s with ps top nodes and gs bottom nodes:

> Determine the rs automorphisms = non-redundant permutations

AVIRNNW

2Not in the way of the bmotif package [SSS™ 19]
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Motif count

Couting motifs?. For a given motif s with ps top nodes and gs bottom nodes:

> Determine the rs automorphisms = non-redundant permutations

AVIRNNW

> Choose ps nodes among m and gs nodes among n;

> The number of possible 'positions’ is then

Cs = m X n X rs;
° Ps qs s

2Not in the way of the bmotif package [SSS™ 19]
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> Determine the rs automorphisms = non-redundant permutations

AVIRNNW

> Choose ps nodes among m and gs nodes among n;

> The number of possible 'positions’ is then

Cs = m X n X rs;
° Ps qs s

> Try all positions o = 1, ... cs, and count the number of matches:

Cs
Ns = Z I{motif s matches at position «a}.

a=1

2Not in the way of the bmotif package [SSS™ 19]
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Motif count

Couting motifs?. For a given motif s with ps top nodes and gs bottom nodes:

> Determine the rs automorphisms = non-redundant permutations

AVIRNNW

> Choose ps nodes among m and gs nodes among n;

> The number of possible 'positions’ is then

Cs = m X n X rs;
° Ps qs s

> Try all positions o = 1, ... cs, and count the number of matches:

Cs
Ns = Z I{motif s matches at position «a}.
a=1
Expected count. E(Ns) = cs¢ps, with

¢s = matching probability = "'motif probability’

2Not in the way of the bmotif package [SSS™ 19]
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Motif probability

Motif probability ¢, under BEDD3. Need to integrate wrt Z = (U, V).

3Consider here induced motifs (only the presence of the prescribed edges is required) # exact motif

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25 15 /47



1 - Motifs in plant-pollinator networks ~ Motif count distribution

Motif probability
Motif probability ¢, under BEDD3. Need to integrate wrt Z = (U, V).

An example. Consider the motif s = Xwith ps = 2 and gs = 3, we have

3. = j...fp4g(ul)g(uZ)3h(vl)h(v2)h(V3)2 dur dup dvi dvs ds

= ([ et aw) ([ ha? @) /0 [#50]

= (bottom 3-star probability) x (top 2-star probability) / (edge probability)

3Consider here induced motifs (only the presence of the prescribed edges is required) # exact motif
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Motif probability

Motif probability ¢, under BEDD3. Need to integrate wrt Z = (U, V).

An example. Consider the motif s = Xwith ps = 2 and gs = 3, we have

3. = f...fp4g(ul)g(uZ)3h(vl)h(v2)h(V3)2 dur dup dvi dvs ds

= ([ et aw) ([ ha? @) /0 [#50]

= (bottom 3-star probability) x (top 2-star probability) / (edge probability)

A favourable configuration.

> Edge and star probabilities contain all information.

> Unbiased estimates are given by their respective empirical frequencies F = N/c
(sufficient statistics of the BEDD model).

> The integration wrt Z = (U, V) is implicitly achieved (without estimating g and h).

3Consider here induced motifs (only the presence of the prescribed edges is required) # exact motif
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1 - Motifs in plant-pollinator networks Motif count distribution

Some more results

Moments of the count.
> Mean: E(Ns) = ¢s X ¢

#Motif counts are also network U-statistics [L.M23,LMDMR25]
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Some more results

Moments of the count.
> Mean: E(Ns) = cs X 55

> Variance: Same game, requires to evaluate IE(NZ) =E (X, matchm)2
— Need to consider overlaps between positions (super-motifs: [PDK ' 08] [#51])

IZ400 " = A o

— Compute the respective expected count in the way as for other motifs

> Covariance: Same game to compute Cov(Ns, Ny/)

#Motif counts are also network U-statistics [L.M23,LMDMR25]
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1 - Motifs in plant-pollinator networks ~ Motif count distribution

Some more results

Moments of the count.
> Mean: E(Ns) = cs X 55

> Variance: Same game, requires to evaluate IE(NZ) E (X, matchm)2
— Need to consider overlaps between positions (super-motifs: [PDK ' 08] [#51])

IZ400 " = A o

— Compute the respective expected count in the way as for other motifs

> Covariance: Same game to compute Cov(Ns, Ny/)

Proposition: Asymptotic normality [OLR22].* Under BEDD, for non-star motifs,
» Under sparsity conditions (p occ m~2n—b):

(Ns — B(N)) / Vi ™ v,

> Account for plug-in when moderate network size (A-method):

(Ns —E(Ns) + B (JE(NS))) /«/@(Ns —E(Ns)) ™5 AN(0,1)

#Motif counts are also network U-statistics [L.M23,LMDMR25]
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1 - Motifs in plant-pollinator networks Networks comparison in space and time

Model 1: Networks comparison in space and time
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1 - Motifs in plant-pollinator networks ~ Networks comparison in space and time

French plant-pollinator networks

Joint work with Natasha de Manincor et Frangois Massol

Question. Does the structure of plant-pollinator network vary in space and time?
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French plant-pollinator networks

Joint work with Natasha de Manincor et Frangois Massol

Question. Does the structure of plant-pollinator network vary in space and time?

Design.
> 3 French regions (Hauts-de-France, Normandie and Occitanie), 2 sites / region

> 2 years, 7 months / year

» 3 x2x2x7 ~ 82 networks
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1 - Motifs in plant-pollinator networks ~ Networks comparison in space and time

French plant-pollinator networks

Joint work with Natasha de Manincor et Frangois Massol

Question. Does the structure of plant-pollinator network vary in space and time?

Design.
> 3 French regions (Hauts-de-France, Normandie and Occitanie), 2 sites / region

> 2 years, 7 months / year

» 3 x2x2x7 ~ 82 networks

Approach. Distance-based embedding:
> Define a network distance (gathering all motifs)

> Use (permutation-based) multivariate analysis of variance to test spatial or temporal effects
('Adonis’, [MA01,7506])
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1 - Motifs in plant-pollinator networks ~ Networks comparison in space and time

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?
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1 - Motifs in plant-pollinator networks ~ Networks comparison in space and time

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Test statistic.
> Assume A ~ BEDD(p*, g”, h*) and B ~ BEDD(pB, gB, hB)
Ho = {g” = g}
> For motif s, with
Bo(NZ) = Bon oo ja(N),  Bo(NE)) =B s a5 (NE)

we have
(N£ = Eo(N2)) — (NE — Eo(NE))

8 = N (0,1)
Vo(N2) + Vo(NE)

W (A, B) =
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1 - Motifs in plant-pollinator networks ~ Networks comparison in space and time

Comparing network imbalances

Question. Do network A and B share the same imbalance for pollinators?

Test statistic.
> Assume A ~ BEDD(p*, g”, h*) and B ~ BEDD(pB, gB, hB)
Ho = {g” = g}
> For motif s, with
Bo(NZ) = Bon oo ja(N),  Bo(NE)) =B s a5 (NE)

we have
(N£ = Eo(N2)) — (NE — Eo(NE))

8 = L Ar(0,1)
Vo(N2) + Vo(NE)

W (A, B) =

Network 'distance’ for pollinator imbalance

D@ (A B) = Y W (A B)

s

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25

19 /47



Results

1 - Motifs in plant-pollinator networks

Pollinator imbalance D(8). Adonis anova table

Networks comparison in space and time

Df  Sum Of Sgs R? F Pr( F)
InsectNb 1 69.9 0.2595  42.69 le-05
PlantNb 1 31.17  0.1157 19.04 le-05
Year 1 2.66  0.0099 1.62  0.22212
Month 6 24.8 0.092 2,52 0.00959
Region 2 8.67  0.0322 2.65  0.04531
Year:Month 6 4.81 0.0179 0.49  0.88756
Year:Region 2 5.51  0.0204 1.68 0.1787
Month:Region 12 3241  0.1203 1.65 0.06346
Year:Month:Region 12 27.26  0.1012 1.39 0.15884
Residual 38 62.22  0.2309
Total 81 269.42 1
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1 - Motifs in plant-pollinator networks

Pollinator imbalance D(8). Adonis anova table

Networks comparison in space and time

Df  Sum Of Sgs R? F Pr( F)
InsectNb 1 69.9 0.2595  42.69 le-05
PlantNb 1 31.17  0.1157 19.04 le-05
Year 1 2.66  0.0099 1.62  0.22212
Month 6 24.8 0.092 252 0.00959
Region 2 8.67  0.0322 2.65  0.04531
Year:Month 6 4.81 0.0179 0.49  0.88756
Year:Region 2 5.51  0.0204 1.68 0.1787
Month:Region 12 3241  0.1203 1.65 0.06346
Year:Month:Region 12 27.26  0.1012 1.39 0.15884
Residual 38 62.22  0.2309
Total 81 269.42 1

> Because of small network sizes,
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Results

1 - Motifs in plant-pollinator networks

Pollinator imbalance D(8). Adonis anova table

> Because of small network sizes, need to correct for the number of insects and plants

> Significant effect of the region and the month, indicating changes of the insect imbalance

Networks comparison in space and time

Df  Sum Of Sgs R? F Pr( F)
InsectNb 1 69.9 0.2595  42.69 le-05
PlantNb 1 31.17  0.1157 19.04 le-05
Year 1 2.66  0.0099 1.62  0.22212
Month 6 24.8 0.092 252 0.00959
Region 2 8.67  0.0322 2.65  0.04531
Year:Month 6 4.81 0.0179 0.49  0.88756
Year:Region 2 5.51  0.0204 1.68 0.1787
Month:Region 12 3241  0.1203 1.65 0.06346
Year:Month:Region 12 27.26  0.1012 1.39 0.15884
Residual 38 62.22  0.2309
Total 81 269.42 1

both in space and time
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Results

1 - Motifs in plant-pollinator networks

Pollinator imbalance D(8). Adonis anova table

> Because of small network sizes, need to correct for the number of insects and plants

> Significant effect of the region and the month, indicating changes of the insect imbalance

Networks comparison in space and time

Df  Sum Of Sgs R? F Pr( F)
InsectNb 1 69.9 0.2595  42.69 le-05
PlantNb 1 31.17  0.1157 19.04 le-05
Year 1 2.66  0.0099 1.62  0.22212
Month 6 24.8 0.092 252 0.00959
Region 2 8.67  0.0322 2.65  0.04531
Year:Month 6 4.81 0.0179 0.49  0.88756
Year:Region 2 5.51  0.0204 1.68 0.1787
Month:Region 12 3241  0.1203 1.65 0.06346
Year:Month:Region 12 27.26  0.1012 1.39 0.15884
Residual 38 62.22  0.2309
Total 81 269.42 1

both in space and time

> The pattern is conserved from year to the next (not year effect)
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Results

1 - Motifs in plant-pollinator networks

Pollinator imbalance D(8). Adonis anova table

> Because of small network sizes, need to correct for the number of insects and plants

> Significant effect of the region and the month, indicating changes of the insect imbalance

Networks comparison in space and time

Df  Sum Of Sgs R? F Pr( F)
InsectNb 1 69.9 0.2595  42.69 le-05
PlantNb 1 31.17  0.1157 19.04 le-05
Year 1 2.66  0.0099 1.62  0.22212
Month 6 24.8 0.092 252 0.00959
Region 2 8.67  0.0322 2.65  0.04531
Year:Month 6 4.81 0.0179 0.49  0.88756
Year:Region 2 5.51  0.0204 1.68 0.1787
Month:Region 12 3241  0.1203 1.65 0.06346
Year:Month:Region 12 27.26  0.1012 1.39 0.15884
Residual 38 62.22  0.2309
Total 81 269.42 1

both in space and time

> The pattern is conserved from year to the next (not year effect)

» No significant effect found for the plant imbalance distance D(h

S. Robin (Sorbonne université)
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2 - Markov switching Hawkes process & Bat calls

Outline

2 - Markov switching Hawkes process & Bat calls
A hidden Markov model?
Bats calls sequences
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Discrete time Markov-switching Hawkes process

Data [#8]. Yx = number of bat calls during the k-th time bin.

5The proof does not rely on [AMRO09]
Some latent variable models in ecology StatMathAppli'25 22 /47
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Discrete time Markov-switching Hawkes process

Data [#8]. Yx = number of bat calls during the k-th time bin.
Markov switching Hawkes process model. In discrete time:
> Hidden path (Zx)x>1 = homogeneous Markov chain with Q states
(Zik=1 ~ MCq(v, )
v = intial distribution, m = transition matrix;
> Observed counts: for k > 1 and
k—1
(Ye | (Ye)esk—1,2Zk = q) ~ P (Mq +ay 521Yk—z> ;
(=1

> Model parameters: 6 = (v, 7, i, o, B)

5The proof does not rely on [AMRO09]
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Discrete time Markov-switching Hawkes process

Data [#8]. Yx = number of bat calls during the k-th time bin.

Markov switching Hawkes process model. In discrete time:

> Hidden path (Zx)x>1 = homogeneous Markov chain with Q states
(Zk)k=1 ~ MCq(v, )
v = intial distribution, m = transition matrix;

> Observed counts: for k > 1 and

k—1
(Ye | (Yo)esk—1,Zk = q) ~P (Mq +a) ﬂelYk_[> :

=1

> Model parameters: 6 = (v, 7, i, o, B)

Proposition: Identifiability [BR25]°.

> The model parameter 6 is identifiable from the joint distribution of (Y1, Y2, Y3).
(0 %0 = pal--) # Por (-, )

5The proof does not rely on [AMRO09]
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (homogeneous case)

Homogeneous discrete-time Hawkes process Y = {Yj}x>1.

k-1
Yil (Ye)esk—1 ~ P (M tay ﬁe_lyk—z>

=1

(Yk)k=1 is not a Markov chain (because of infinite memory).
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Markovian representation (homogeneous case)

Homogeneous discrete-time Hawkes process Y = {Yj}x>1.
k—1

Yil (Ye)esk—1 ~ P (M tay ﬁe_lyk—z>
=1

(Yk)k=1 is not a Markov chain (because of infinite memory).

Markovian representation.

> Define

K
U =0, Ue=a ), B Vi,
=1
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (homogeneous case)

Homogeneous discrete-time Hawkes process Y = {Yj}x>1.
k—1

Yil (Ye)esk—1 ~ P (M tay ﬁe_lyk—z>
=1

(Yk)k=1 is not a Markov chain (because of infinite memory).

Markovian representation.

> Define

K
U =0, Ue=a ), B Vi,
=1

> then, for k = 1 (with Uy = Yy = 0)

Ux = aYk—1 + BUk-1, Yi | Uk ~ P(p+ Uy).
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (homogeneous case)

Homogeneous discrete-time Hawkes process Y = {Yj}x>1.
k—1

Yil (Ye)esk—1 ~ P (M tay Be_lyk—z>
(=1

(Yk)k=1 is not a Markov chain (because of infinite memory).

Markovian representation.

> Define

K
U =0, Ue=a ), B Vi,
=1

> then, for k = 1 (with Uy = Yy = 0)

Ux = aYk—1 + BUk-1, Yi | Uk ~ P(p+ Uy).

50 ((Y, Ux)) =1 forms a Markov chain.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (Markov switching case)

Markov switching Hawkes process model. Can be rephrased as
(Y | (Ye)esk—1,Zk = q) ~ P (g + Uk)
with

K
U =0, Uc=a ) B Yy,
=1
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Markovian representation (Markov switching case)

Markov switching Hawkes process model. Can be rephrased as
(Ye | (Ye)esk—1,Zk = q) ~ P (g + Uk)
with
k
U =0, Uc=a ) B Yy,

£=1

Consequence.
> The model is a regular Hidden Markov Model (HMM) with graphical model

****92k714)zk4)2k+1****’

U1 % Uk Ukt1 + Uggo ---->
A AN AN

Yi—1 Y Yit1

(Zk)k=1 = hidden path,  (Ux)k>1 = memory, (Yx)k>1 = observed process.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Inference

Maximum likelihood inference: 8 = arg maxg log pg(Y)
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Inference

Maximum likelihood inference: 8 = arg maxg log pg(Y)

EM algorithm for HMM: [DLR77,CMRO05]
6+ = arg max Eyn [logpa(Y,Z)| Y]
0 ~——

M step step

> E step: Evaluate Q(0 | (M) = Egyn[log pe(Y, Z) | Y] (forward-backward recursion)

> M step: Gradient ascent, computing Vo Q(6 | G(h)) by recursion
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Inference

Maximum likelihood inference: 8 = arg maxg log pg(Y)

EM algorithm for HMM: [DLR77,CMRO05]

6+ = arg max Eyn [logpa(Y,Z)| Y]
0 —

M step step

> E step: Evaluate Q(0 | (M) = Egyn[log pe(Y, Z) | Y] (forward-backward recursion)

> M step: Gradient ascent, computing Vo Q(6 | 6(”)) by recursion

Model selection. Penalized likelihood

log(NV
AICq = log p; (¥) — Do, BICq = log py, (Y) - DQ#

with Dg = number of parameters = 2 + Q2 and N = number of time bins.
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Simulation study (not shown)

Design.

1. Simulate a continuous time Markov-switching Hawkes process
2. With more or less events (control parameter \)

3. Then discretise with more or less bins (control parameter N oc nb events)
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Simulation study (not shown)

Design.
1. Simulate a continuous time Markov-switching Hawkes process

2. With more or less events (control parameter \)

3. Then discretise with more or less bins (control parameter N oc nb events)

Conclusions.

> Inference more accurate when more signal (large A)!!! [#54]

> Inference more accurate with thinner discretization step (large N)
But at the price of a higher computational cost [#56]

> BIC does not capture the right number of states
Sequences not simulated according to the model

> AIC does, when enough signal () and discretization (N)
Blind to the simulation shift from the model? [#55]
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2 - Markov switching Hawkes process & Bat calls A hidden Markov model?

Simulation study (not shown)

Design.
1. Simulate a continuous time Markov-switching Hawkes process

2. With more or less events (control parameter \)

3. Then discretise with more or less bins (control parameter N oc nb events)

Conclusions.

> Inference more accurate when more signal (large A)!!! [#54]

v

Inference more accurate with thinner discretization step (large N)
But at the price of a higher computational cost [#56]

> BIC does not capture the right number of states
Sequences not simulated according to the model

> AIC does, when enough signal () and discretization (N)
Blind to the simulation shift from the model? [#55]

Practical recommendations: Take N = 2n and use AIC to choose Q.

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25
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2 - Markov switching Hawkes process & Bat calls Bats calls sequences

Model 2: Bats calls sequences
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2 - Markov switching Hawkes process & Bat calls  Bats calls sequences

Vigie-chiro project

Data set.

> Vigie-chiro project French participatory project to monitor bats echolocation calls
(https://www.vigienature.fr/fr/chauves-souris).

> 2354 overnight recordings collected between October 2010 and January 2020 in 755
locations.

> Restricted to sequences with at least 50 calls — 1555 time sequences.

5BIC: Poisson = 153 (homo = 132, HMM = 21), Hawkes = 1402 (homo = 775, HMM = 627).
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2 - Markov switching Hawkes process & Bat calls

Vigie-chiro project

Data set.

Bats calls sequences

> Vigie-chiro project French participatory project to monitor bats echolocation calls
(https://www.vigienature.fr/fr/chauves-souris).

> 2354 overnight recordings collected between October 2010 and January 2020 in 755

locations.

> Restricted to sequences with at least 50 calls — 1555 time sequences.

Poisson vs Hawkes / Homogeneous vs HMM. Best model according to AIC®

Poisson  Hawkes | Total

Homogeneous 34 353 387
Hidden Markov 24 1144 1168
Total 58 1497 1555

> Memory (95%) and heterogeneity (75%) are present in most sequences
> Hawkes-HMM best fits almost 3 sequences out of 4.

5BIC: Poisson = 153 (homo = 132, HMM = 21), Hawkes = 1402 (homo = 775, HMM = 627).

S. Robin (Sorbonne université)

Some latent variable models in ecology
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2 - Markov switching Hawkes process & Bat calls  Bats calls sequences

An example

Conditionally most probable states. (MAP)

Hawkes HMM (Q = 3) Poisson HMM (Q = 4)

> Interpretation of the states: absence of calls, transit and foraging (high call frequency)
> Hawkes-HMM state changes do not correspond to slope changes

> Poisson-HMM needs many state changes to account for self-excitation
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2 - Markov switching Hawkes process & Bat calls  Bats calls sequences

States and species

The number of bat species was also recorded each night in each site.

20-

e
o

number of species
Y
o

> The number of states does

=

3
number of states

not match the number of species

> More discussion to come with members of the Vigie-chiro project
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3 - Joint species distribution model

Outline

3 - Joint species distribution model
From EM to variational EM to Monte-Carlo EM
Fish species from the Barents sea
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Joint species distribution model

Data. n sites, p species,
> x; = vector of covariates for site i,

> Y; = (Yqa,...Yip) = abundance vector in site i.
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Joint species distribution model

Data. n sites, p species,
> x; = vector of covariates for site i,

> Y; = (Yqa,...Yip) = abundance vector in site i.

Poisson log-normal (PLN) model.

> Latent layer:
(Zi)1<i<n iid ~ Np(0,%);

> Observed layer: counts (Yjj)i<i<n,1<j<p indep | Z
Y| Z ~ P (explog + x5+ Zy)
oj; = given 'offset’ term, accounting for the sampling effort;
> Parameters 0 = (3,%):

Bj = abiotic interactions, Y = biotic interactions.
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

An example

A typical dataset.
> Fish species from the Barents sea [FNA06],

> n = 89 sites, p = 30 species, d = 4 covariates (latitude, longitude, temperature, depth).
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM

An example
A typical dataset.
> Fish species from the Barents sea [FNA06],

> n = 89 sites, p = 30 species, d = 4 covariates (latitude, longitude, temperature, depth).

Importan aim of JSDM: Distinguish between abiotic and biotic effects:

Covariate effects Correlation induced Between species
(B) by the environment correlation (X)

species
species
species

Latwde  Lomgiwde  Deph Temperature
covariates species species
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]
0+ — arg max Egn [logpa(Y,2) | Y]
] —

N—— E
M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.
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Inference

Maximum likelihood inference via EM. [DLR77]

0+ — arg max Egn [logpa(Y,2) | Y]
] —

N—— E
M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]

0+ — arg max Egn [logpa(Y,2) | Y]
] —

M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].

> Choose a class Q of approximate (parametric) distributions and a divergence measure
Dlallp] (e-g. KL[alp])
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]

0+ — arg max Egn [logpa(Y,2) | Y]
] —

M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].

> Choose a class Q of approximate (parametric) distributions and a divergence measure
Dlallp] (e-g. KL[alp])

> VE step (approximation): q("*1) = arg mingeo D [a(2)|pgm (Z | V)]
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]
0+ — arg max Egn [logpa(Y,2) | Y]
] —

M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].

> Choose a class Q of approximate (parametric) distributions and a divergence measure
Dlallp] (e-g. KL[alp])

> VE step (approximation): q("*1) = arg mingeo D [a(2)|pgm (Z | V)]

> M step (update): 8("T1) = arg max, E, 1) [log pa(Y, Z)]
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Inference

Maximum likelihood inference via EM. [DLR77]
0+ — arg max Egn [logpa(Y,2) | Y]
] —

M step step

> The E step requires some knowledge about pg(Z | Y), which turns out to be intractable for
the PLN model.

Variational EM [WJ08,BKM17].

> Choose a class Q of approximate (parametric) distributions and a divergence measure
Dlallp] (e-g. KL[alp])

> VE step (approximation): q("*1) = arg mingeo D [a(2)|pgm (Z | V)]

> M step (update): 8("T1) = arg max, E, 1) [log pa(Y, Z)]

» If D = KL, a lower bound of log py(Y) ('ELBO’) increases at each step
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

VEM for the Poisson log-normal model

Approximation class. Gaussian approximation [CMR18,CMR19]

q(2) = HN(Z,-; m;, S;)

i=1

» Parameter estimate 0 = (f,ﬁ)
> Approximate conditional distribution Z; | Y; =~ N(m;, §,-),
> Lower bound ELBO(éA?, m, §) (R package PLNmodels)
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PLNmodels

3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

VEM for the Poisson log-normal model

Approximation class. Gaussian approximation [CMR18,CMR19]

a(2) = [ [N(Zii mi, S))
i=1

» Parameter estimate 0 = (f,ﬁ)
> Approximate conditional distribution Z; | Y; =~ N(m;, §i),
> Lower bound ELBO(@, m, §) (R package PLNmodels)

Variational inference.

> Reasonably easy to implement, fast, empirically accurate

> Very few theoretical guaranties: no general properties as for maximum likelihood
(consistency, asymptotic normality, etc.)

— No measure of uncertainty (no test, no confidence interval)

> Can we build upon variational inference to achieve 'genuine’ statistical inference?
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PLNmodels

3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Toward genuine maximum likelihood inference [sr24]

Monte Carlo EM (MCEM). [CD85] When p(Z | Y)) can be sampled from:

> MCE step: Sample (Z™)-1..m iid Py (Z | Y), then estimate

Q(g [ 6(M)y

E \

M
Z'nge (v, zm)

> M step: Update
O+ = arg max (5(0 | 6(M)
0
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Toward genuine maximum likelihood inference [sr24]

Monte Carlo EM (MCEM). [CD85] When p(Z | Y)) can be sampled from:
> MCE step: Sample (Z™)m=1..m iid Py (Z | Y), then estimate

M
> logpa(Y,2Z™)

m=1

Q6" = %

> M step: Update
0t = arg max Q(0 | 6(M)
0

Importance sampling. When p(Z | Y) can not be sampled from:
> Sample (Z™)m=1..m id g (2), ¢ = proposal,
> Compute the non-normalized weights p( ) = = pony (Y, 2Z™) Jqth(zmy,
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Toward genuine maximum likelihood inference [sr24]

Monte Carlo EM (MCEM). [CD85] When p(Z | Y)) can be sampled from:
> MCE step: Sample (Z™)m=1..m iid Py (Z | Y), then estimate
1 M

o 2. logpe(Y, Z™)

m=1

QoM =

> M step: Update
0t = argmax Q(6 | (M)
0

Importance sampling. When p(Z | Y) can not be sampled from:
> Sample (Z™)m=1..m id g (2), ¢ = proposal,

> Compute the non-normalized weights p( ) = = pony (Y, 2Z™) Jqth(zmy,

> Estimate
M

QU 16™): 2 ? log po (Y, Z" 2 o
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Composite likelihood

Importance sampling has a poor efficiency’ in 'large’ dimension (say p > 10, 15)

— Need to reduce the sampling dimension

"Measured in terms of ESS ~ variance of the weights
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM
Composite likelihood

Importance sampling has a poor efficiency’ in 'large’ dimension (say p > 10, 15)

— Need to reduce the sampling dimension

Composite likelihood.
> Build B overlapping blocks Ci,...Cg, each containing k species,

> Define the composite log-likelihood as

B
cly(Y) = Z'nge (YP),  where Y* =[Yjlic1,. njecy

"Measured in terms of ESS ~ variance of the weights

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25

37/47



3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM
Composite likelihood

Importance sampling has a poor efficiency’ in 'large’ dimension (say p > 10, 15)

— Need to reduce the sampling dimension

Composite likelihood.
> Build B overlapping blocks Ci,...Cg, each containing k species,

> Define the composite log-likelihood as
B
clo(Y Z log pg(Y?), where  Y? = [Yili=1,...njecs>

> Then, the maximum composite likelihood estimator [VRF11]
éa = argmaxcly(Y)
0
is consistent, asymptotically Gaussian with asymptotic variance given by

J(0) = Vo[Vgcly(Y)], H(0) = —Eg[Victo(Y)],
Voo (Bcr) = HTY(0)J(O)HT1(0).

"Measured in terms of ESS ~ variance of the weights
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Proposed composite likelihood algorithm

Proposition: EM applies to composite likelihood [SR24].

> Because the latent variables Z can be split in the same way as the observed abundances Y:

Zb = [Zj)iz1,. mjec,

> The EM decomposition applies within each block.

8Not always possible: e.g., need to have p | Bk and p(p — 1) | Bk(k — 1)
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Proposed composite likelihood algorithm

Proposition: EM applies to composite likelihood [SR24].

> Because the latent variables Z can be split in the same way as the observed abundances Y:

Zb = [Zj)iz1,. mjec,

> The EM decomposition applies within each block.

Proposal for importance sampling.

> Start with g{(Z°) = Gvem(2?),

> Then update qthrl)(Zb) with the estimated mean and variance of p,() (Z° | Y?).

8Not always possible: e.g., need to have p | Bk and p(p — 1) | Bk(k — 1)
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3 - Joint species distribution model ~ From EM to variational EM to Monte-Carlo EM

Proposed composite likelihood algorithm

Proposition: EM applies to composite likelihood [SR24].

> Because the latent variables Z can be split in the same way as the observed abundances Y:
b
Z° = [Zjli=1,...njeCy»

> The EM decomposition applies within each block.

Proposal for importance sampling.
> Start with g{(Z°) = Gvem(2?),

> Then update qéthl)(Zb) with the estimated mean and variance of p,() (Z° | Y?).

Building the blocks. To guaranty the same precision for all estimates, one would ideally want that
Bj: each species j belongs to the same number of blocks C1,...Cg,
g each pair of species (j,’) appears in the same number of blocks.

> Same problem as the construction of a incomplete balanced block design® [#58]

8Not always possible: e.g., need to have p | Bk and p(p — 1) | Bk(k — 1)
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM
Simulation study

Main aim. Assess normality

> Test statistic (57 0%*) /\WA/OQ (5) for the regression coefficients

> Criterion = p-value of the Kolmogorov-Smirnov test for normality

> Effect of the block size on the variance of the estimates (actually small [#59])
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3 - Joint species distribution model From EM to variational EM to Monte-Carlo EM
Simulation study

Main aim. Assess normality

> Test statistic (57 0%*) /\WA/OQ (5) for the regression coefficients

Criterion = p-value of the Kolmogorov-Smirnov test for normality

v

Effect of the block size on the variance of the estimates (actually small [#59])

Results. 100 sites, 3 covariates, 100 simulations

7 species 10 species 20 species 50 species
HEEE HoTTTT g i eese ===
gl L = E gl -4 : g | iiii"q g | 1‘*!
L] dE I e

el ol as or ven K S dle o s o e K 2 el o s o v k & d s dls o vew o

FL = full likelihood, CLk = composite likelihood(k = 2,3,5,7),

VEM = pseudo Fisher information matrix based on the ELBO,
JK = jackknife variance estimate of V(0ygnm)
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3 - Joint species distribution model Fish species from the Barents sea

Model 3: Fish species from the Barents sea
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3 - Joint species distribution model  Fish species from the Barents sea

Fish species in the Barents sea

Comparison of the estimates.
B s ESS (CL5)

o VEM B
. cL3
& cLs -
X CL7 =
15 10 s o s oo I 1472 99 614 B35 1081 1052 1620 1894 2165 2406
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3 - Joint species distribution model
Fish species in the Barents sea

Comparison of the estimates.

B

Fish species from the Barents sea

o VEM B
< + CL3
& cLs -
° X CL7 °
15 10 s o s T T 1472 99 614 B35 1081 1052 1620 1894 2165 2406

* 8 o
B B
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¥ R
+ 8 -
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+
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Conclusion

To conclude
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Conclusion

Summary

Latent variable models.

> They are ubiquite in statistiscal ecology,
> For various modelling purposes (inferring Z is critical in Model 2, not in Models 1 and 3),

> Latent variables mays play different roles, from almost mechanistic to purely instrumental.
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Conclusion

Summary

Latent variable models.

> They are ubiquite in statistiscal ecology,
> For various modelling purposes (inferring Z is critical in Model 2, not in Models 1 and 3),

> Latent variables mays play different roles, from almost mechanistic to purely instrumental.

Inference: No big picture.

> Dealing with latent variable yields specific difficulties, ranging from trivial to intractable,
> Often model-dependant, requiring specific developments,

> Still some generic questions (e.g. safely replace EM with gradient ascent?).
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Conclusion

Discussion (some home works ?)

1 - Network motifs (plant-pollinator)
a - No clear understanding of the information brought by each motif;

b - (Asymptotic) normality does not hold for the networks at hand [#52]
(Could explain the poor power of the tests?).

c - BEDD is not consistent with the actual sampling process of the network;
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Conclusion

Discussion (some home works ?)

1 - Network motifs (plant-pollinator)
a - No clear understanding of the information brought by each motif;

b - (Asymptotic) normality does not hold for the networks at hand [#52]
(Could explain the poor power of the tests?).

c - BEDD is not consistent with the actual sampling process of the network;

2 - Hawkes hidden Markov model (bats calls)
a - The Markovian representation also holds for non-exponential kernels [#57];

b - No theoretical problem to define a continuous time version of the proposed model
(but many practical ones);

c - A proper model selection criterion accounting for the discretization step is still needed.
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Conclusion

Discussion (some home works ?)

1 - Network motifs (plant-pollinator)
a - No clear understanding of the information brought by each motif;

b - (Asymptotic) normality does not hold for the networks at hand [#52]
(Could explain the poor power of the tests?).

c - BEDD is not consistent with the actual sampling process of the network;

2 - Hawkes hidden Markov model (bats calls)
a - The Markovian representation also holds for non-exponential kernels [#57];

b - No theoretical problem to define a continuous time version of the proposed model
(but many practical ones);

c - A proper model selection criterion accounting for the discretization step is still needed.

3 - Poisson log-normal (species abundances)
a - Account for the 'excess’ of null abundances [BCGM24];
b - Could we say more about the properties of VEM estimates?

c - The expression of pg(Z | Y) is hugly, but the function is actually very regular
— Could we 'learn’ a deterministic transformation allowing, say, to sample from it?
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1 - Network motifs

Network embedding: Zackenberg's data [sroBi6]

Raw counts

[#6]
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1 - Network motifs

Network embedding: Zackenberg's data [sroBi6]

Raw counts Normalized counts

97:25

§
£

[#6]

S. Robin (Sorbonne université) Some latent variable models in ecology StatMathAppli'25 48 /47



Network embedding: Zackenberg's data

Raw counts

1 - Network motifs

Normalized counts

[SROB16]

Choleski

[#6]

97:25

96:22

7:3

97:2
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1 - Network motifs

Network embedding: Zackenberg's data [sroBi6]

Raw counts

Normalized counts Choleski

Bray-Curtis MDS

[#6]

97:25

96:22

7:3

97:2

[
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1 - Network motifs

Bipartite motifs

'Meso-scale’ analysis. [SCB™19]
» Motifs ='building-blocks’ H

> between local (several nodes) and
global (sub-graph)

Interest. WV. ’W- ZOW ZW QW ZW
> Generic description of a network 2 B = z » »
> Enables network comparison wa’ mm 32I/N ”m MN\I “m
> Even when the nodes are different % m m m m m m
(+ 'species-role’: out of the scope here) “m mm ”m. “m wm. “m.
[#6] @ P “
nNe B S

Existing tool. bmotif package [SSS'19]: counts motif occurrences (Not an easy task!)
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bmotif

1 - Network motifs
Motif probability
Occurrence probability 55 = P{Ysa = 1}. Under the B-EDD model [OLR22]:

top stars bottom stars

Xmm%mm

edges
s _p _ (61¢2) (¢104) _ $ods 49
¢s = =T e = o [#49]

Estimated probability Fs. [#15]

- _  RF
3. = D294 - E, .- 2h
o1 Fy

where F1, Fp, F4 = observed frequencies of edges, top stars and bottom stars.
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1 - Network motifs

Super-motifs

Some super-motifs:

- m W m m
Variance:
2
N2 = <Z Ysa>
= Z Ysa Ysp
a,B:anB=g
+ Z Ysa YsB
) —_— .
oBanfrg occurrence of -+ - 396 super-motifs

a super-motif

Covariance: same game, for Ysq Ys’B with s # s’ [#16]
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1 - Network motifs

In practice: Asymptotic normality

(n=2m/3) m =50 m = 100 m = 200

N

Normal distribution, Poisson-geometric distribution with same mean and variance [Sta01,PDK " 08]

[#16] [#44]
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2 - Hawkes discrete HMM

Self-exciting exponential Hawkes process
A(t) =X+ a Z e 2(t=Ti)
T<t

Self exciting: Each event increases the probability of observing another event
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2 - Hawkes discrete HMM

Self-exciting exponential Hawkes process

A(t)=Xo+a Z e~ b(t=T0)

Te<t

Self exciting: Each event increases the probability of observing another event

events

]j'w TzTa ]j'-: ﬁ'e TT ]j'ﬂi'e T

> Exponential kernel function h(t) = ae—?*

> a > 0 to ensure that \ is non negative

NIt

> a/b < 1 to ensure stationarity

> Applications: sismology, epidemiology,
vulcanology, neurosciences, ecology, ... [#9]

M)
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2 - Hawkes discrete HMM

Simulations: estimation

[#26]

number of events Difference between estimated and true discrete parameters
=05 L-05, alpha L= 0.5, beta L= 05, mut L=05, mu2 L= 05, mu3
350- 15- 15- .
300- 104
250~ .
200~ 5-
150- .3
o EN N
100- o
. 051 2 4
=1 L=1, alpha L=1, beta L=1, mut b b
800~ 1.0- 7 05- 05- ® 15- @
. 04- @ 10-
c004 05-] 8 e e 00 #* 03. 054
. ) _
00 4-!-J. _05- i 00 +
400- 05 3 f 0‘ ; -05- '?T . c
200 05, ., . 0. .t i -0 WRSSS C RS 5 o
: 8 .
c 051 2 4 051 2 4 051 051 2 4 051 2 4 m‘
[
) 8 L=15,alpha L= 1.5, beta L= 15, mut L= 1.5, mu2 L=15,mu3
1500- . 5 . 10- 2- 8 B -
1200- =R
900~ +++
600-
. 0.51 2 4
=2
2500~ L=2, mu3
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2 - Hawkes discrete HMM

Simulations: model selection

number of Relative AIC (compared with Q=1) for each value of Q
events c-05 =1 c-2 -4
350~ 5, e 0 0
- . ' '
300~ ! )
50- e : ,
250- ' ! -
o ' W
200- 25 i . . g
150~ o- 1
100~ ! . ]
_25- ! . !
800- 75- ¢ e . .
. :
600- 50 —5 "
° ! v
25- 1 -
400 #?‘—lil% %
0- .
] . ]
200- o . '
1500- @ < 9- ° e ! '
1200- 60~ i .
. o :
900~ 30- . .
600- 0- i
2500~ . : '
2000- 501 T . "
| -
00 1 I%E\”%E% .
i o] N }
St : L
mEEmEmmE _pn NS ; 1 ! p—— S w—]
2 3 a4 5 2 3 5 2 3 a4 5 2 3 4 5

4
number of classes Q
[#26]
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2 - Hawkes discrete HMM

Simulations: classification and computational time

number of Accurate classification rate Computational times
events 1.0- . 150000 -
350~
300- 08- 100000~
" "
250- ° °
200- 06- o 50000~ @
150~ M
0 0.4~ H 0 e e ol b
100y 10- . 150000~
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2 - Hawkes discrete HMM

Non exponential kernel function h

Compact support. Suppose that h has no exponential form, but

t> LA = h(t) = 0.

Homogeneous discrete Hawkes process.

k=1 N
(Yk | Yl:(kfl)) ~P <M + Z ay Yk_g> with oy :f h(t) dt.
= (e—1)A

Markovian representation. Define Uy = 2221 ayYk_g, then

(Y | Yik=1y) = Y | Uk) ~ P (u+ U)

and ((Yk, Uk))y>1 forms a Markov chain (of order L). [#44]
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3 - Poisson log-normal model

Number of block for composite likelihood

nb blocks (C)
16405 1407
B
\
q

16403

16401

nb species (p)

Figure 1: Number of blocks C' as a function of the number of species p (in log-log-scale) for
blocks of size k = 2 (black squares m), k = 3 (blue circles 0), k =5 (red triangles up A) and
k =7 (green triangles down v). Solid line: number of blocks actually used, dashed line: upper
bound (i’,), dotted line: lower bound p(p-1)/[k(k-1)].
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3 - Poisson log-normal model

Effect of the block size on the variance

. == ; l
- "”;i:'"””i ””” —————§~
: ! T

Figure 4: Boxplot of the relative variance of the estimates Zﬂ}_i of the regression coefficients
obtained with the CL2, CL3 and CL7 algorithms, as compared to the CL5 algorithm for p = 30
species. Each boxplot is built across the d x p = 90 normalised coefficients ;.
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