
Segmentation and classification of a Hawkes process

S. Robin

joint work with C. Dion-Blanc, E. Lebarbier
and A. Bonnet

Sorbonne université
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Introduction

Problem

Counting process
Overnight recording of bat cries in continuous
time

§ Can we detect changes in the occurrence of
events?

§ Can we associate each time period with
some underlying behavior?
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Introduction

Point process

Reminder.

§ pTk qkě1 a random collection of points

§ Count process Nptq “
ř

kě1 ItTk ď tu

§ Intensity function λptq: immediate probability of observing an event at time t

Examples

§ Homogeneous Poisson process: λptq ” λ

§ Heterogeneous Poisson process: λptq “ deterministic function

§ Hawkes process: λptq “ random function of the past
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Introduction

Segmentation (& classification) of a point process

Aim

1. Propose a set of reasonably realistic models;

2. Design an (efficient) algorithm to get the parameter estimates;

3. Choose among the models.

Example Segmentation of a Poisson process [DBLR23]:

1. Model = Poisson process with piece-wise constant intensity function;

2. Algorithm = dynamic programming in (less than) OpNpT q2q;

3. Model selection = cross validation (using thining)
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Segmentation of a Poisson process

Outline

Segmentation of a Poisson process

(Discrete) Hawkes process

Discrete Markov switching Hawkes process

Goodness of fit
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Segmentation of a Poisson process

Segmentation of a Poisson process (1/3)

Model.

Change-points

pτ0 “q0 ă τ1 ¨ ¨ ¨ ă τK´1 ă 1p“ τK q

For t P Ik “sτk´1, τk s:

λptq “ λk

Ñ Continuous piece-wise linear cumulated
intensity function

Bat criesa

asource: Vigie-Chiro program, Y. Bas, CESCO-MNHN

§ Segmentation algorithm: find the ’optimal’ pτ, λq in a reasonnable time

§ Model selection: choose K
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Segmentation of a Poisson process

Segmentation of a Poisson process (2/3)

Classical contrasts (negative log-likelihood, least-
square) are

§ additive wrt the segments and

§ concave wrt the length of each segment,

Ñ The set of optimal change points in included in

tT´
1 ,T1,T

´
2 ,T2, . . .T

´
i ,Ti , . . . ,T

´
n ,Tnu

Ñ The continuous optimization problem turns into a discrete optimization problem
Ñ Dynamic programming algorithm “ Opn2q.
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Segmentation of a Poisson process

Segmentation of a Poisson process (3/3)

Lazy model selection. Thining property:

§ independent processes with proportional
internsities and common change point;

§ cross-validation procedure to choose K .

But segmenting a Poisson process

1. Does not provide any classification (although doable);

2. Does not account for the the self exciting (or inhibiting) nature of some processes;

3. Does not fit the scope of RMR20241.

1Modèles statistiques pour des données dépendantes et applications
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(Discrete) Hawkes process

Outline

Segmentation of a Poisson process

(Discrete) Hawkes process

Discrete Markov switching Hawkes process

Goodness of fit
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(Discrete) Hawkes process

Univariate Hawkes process

(Conditional) intensity function for the Hawkes process [Haw71]:

λpt | Htq “ λptq “ λ0 `
ÿ

Tkăt

hpt ´ Tk q

§ λ0 “ baseline

§ h “ kernel = influence of past events
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(Discrete) Hawkes process

Self-exciting exponential Hawkes process

λptq “ λ0 `
ÿ

Tkăt

ae´bpt´Tk q

Self exciting: Each event increases the probability of observing another event

§ Exponential kernel function hptq “ ae´bt

§ a ě 0 to ensure that λ is non negative

§ a{b ă 1 to ensure stationarity

§ Applications: sismology, epidemiology,
neuroscience, ecology, ...
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(Discrete) Hawkes process

Discrete time Hawkes process

Continuous time exponential Hawkes process

λptq “ λ0 `
ÿ

Tkăt

ae´bpt´Tk q

Discretization [Seo15]

§ Ik “ rτk´1; τk s with τk “ k∆

§ Nk “ NpIk q the number of events on Ik

§ Distribution of pNk qkě1?
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(Discrete) Hawkes process

Cluster representation

§ Immigrants arrive at rate λ0

§ Each immigrant or descendant produces new individuals at rate hpt ´ T q
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(Discrete) Hawkes process

Discrete time Hawkes process

Nk “ NpIk q the number of events on Ik “ rτk´1; τk s

Count distribution

Nk
∆
“ Bk `

ÿ

ℓďk´1

ÿ

TPIℓ

MT pIk q ` Rk

§ Bk „ Ppλ0∆q discrete immigrant process

§ MT pIk q „ P
´

cpa, b,∆qe´bpτk´1´Tq
¯

descendants of T ă τk´1

§ Rk number of descendants of points T P Ik within Ik

Approximation when ∆ is small

§ MT pIk q » P
´

cpa, b,∆qe´bpτk´1´τℓ´1q
¯

for T P Iℓ “ rτℓ´1; τℓs

§ Rk » 0
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(Discrete) Hawkes process

Markovian reformulation

Approximation of Nk

Yk | tYℓuℓďk´1 „ P

˜

µ `

8
ÿ

ℓ“1

αβℓYk´ℓ

¸

,

with µ “ λ0∆ and α, β depending on a, b, ∆.

tYkukě1 is not a Markov chain but

defining tUkukě1

U1 “ 0, Uk “ αYk´1 ` βUk´1,

so that
Yk |pUk´1,Yk´1q „ P pαYk´1 ` βUk´1q ,

then we have that
tpYk ,Uk qukě1

is a Markov Chain.
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Discrete Markov switching Hawkes process

Outline

Segmentation of a Poisson process

(Discrete) Hawkes process

Discrete Markov switching Hawkes process

Goodness of fit
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Discrete Markov switching Hawkes process

Discrete time Hawkes HMM

Model: Q hidden states

§ Hidden path: tZkukě1 homogeneous Markov chain with transition matrix π

§ Observed counts: for k ě 1, set U1 “ 0 and

Yk | tYℓuℓďk´1 „ P

˜

µZk
`

8
ÿ

ℓ“1

αβℓYk´ℓ

¸

Assumptions:

§ The immigration rate varies with the hidden path

§ The number of offspring does not vary with the hidden path

Graphical model:

Zk´1 Zk Zk`1

Uk´1 Uk Uk`1 Uk`2

Yk´1 Yk Yk`1
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Discrete Markov switching Hawkes process

Inference

Aim: Infer the parameter θ “ ppµqq1ďqďQ , πq

pθ “ log pθpY q

EM algorithm: [DLR77]

θph`1q “ argmax
θ

looomooon

M step

Eθphq
loomoon

E step

rlog pθpY ,Zq | Y s

§ E step: Evaluate ℓphqpθq “ Eθphq rlog pθpY ,Zq | Y s (forward-backward recursion)

§ M step: Gradient descent, computing ∇θℓ
phqpθq by recursion

By-product: Classification

pZk “ argmax
q

P
pθ
tZk “ q | Y u, pZ “ argmax

z
p

pθ
pY ,Z “ zq
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Discrete Markov switching Hawkes process

Synthetic data: classification

States 1 2 3

Hawkes HMM
1 273.7 28.7 14.2
2 37 166.3 96.9
3 4.7 24.7 353.8

Poisson HMM
1 181 122.8 12.8
2 136 111.1 53.1
3 45.4 115.2 222.6
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Discrete Markov switching Hawkes process

Synthetic data: parameter estimation
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Goodness of fit

Outline

Segmentation of a Poisson process

(Discrete) Hawkes process

Discrete Markov switching Hawkes process

Goodness of fit
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Goodness of fit

Model selection

Aim: select the number of hidden states Q

Penalized likelihood:

log pθpY q “ Eθrlog pθpY ,Zq | Y s ` HppθpZ | Y qq

Ñ Standard criterion for discrete time HMM

BICpQq “ log p
pθQ

pY q ´ penppθQq,

ICLpQq “ log pθpY q ´ Hpp
pθQ

pZ | Y qq ´ penppθQq

with

penppθQq “
1

2
logpNqpQ2 ` 2q

where N “ number of time steps (i.e. discretized intervals) = tuning parameter
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Goodness of fit

Goodness-of-fit

Time-change theorem [DVJ03] A sequence pTk qkě1 is a realization of N if and only if pΛpTk qqkě1

is a realization of a homogeneous Poisson process with unit intensity. where

Λptq “

ż t

0
λpuqdu (Compensator)

Goodness-of-fit test

§ H0: “pTk qkě1 is a realization of a HMM-Hawkes process with parameter θ”.

§ Kolmogorov-Smirnov test between

`

Λ
pθ
pTk`1q ´ Λ

pθ
pTk q

˘

kě1

and an exponential distribution Ep1q.

Comments

§ Same test for alternative models (Hawkes, HMM-Poisson)

§ Train/test samples (resampling procedure, [RBRGTM14])
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Goodness of fit

Synthetic data: Goodness-of-fit (1/2)

§ The test rejects the homogeneous Poisson but does not differentiate the homogeneous
Hawkes process from the HMM-Hawkes process.
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Goodness of fit

Synthetic data: Goodness-of-fit (2/2)

§ The test is able to detect that the point process is neither an homogeneous Hawkes nor a
HMM-Poisson process
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Goodness of fit

Preliminary results on bat cries

Back to the recording of bat cries over one night:

Q “ 1 Q “ 2 Q “ 3 Q “ 4

§ Q “ 2, 3, hidden states? ( pQBIC “ 1 or 2, depending on N)

§ States = behavior (transit, foraging), species?
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Future works

Outline

Segmentation of a Poisson process
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Future works

Some future works (1/2)

Multivariate Hawkes process: Consider p simultaneous processes pNpiqq1ďiďp (i.e. p neurons, bat
species, ...)

λpiqptq “ λi
0 `

M
ÿ

i“1

ÿ

T
j
k

ăt

hi,j pt ´ T j
k q

Exponential version:

hi,j pt ´ T j
k q “ ai,je

´bpt´T
j
k

q

where sparse interaction matrix A “ rai,j s1ďi,jďp

§ Interaction network between neurons,
species, ...
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Future works

Some future works (2/2)

Modelling inhibition: Non-linear Hawkes process

λptq “ ϕ

¨

˝λ0 `
ÿ

Tkďt

hpt ´ Tk q

˛

‚

with h ă 0.

Effect of the hidden state: State-dependent parameters α and/or β

Yk | tYℓuℓďk´1 „ P

˜

µZk
`

8
ÿ

ℓ“1

αZk
pβZk

qℓYk´ℓ

¸
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Future works
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Backup

Backup: Discrete HMM

Conversion formulas from continuous to discrete Hawkes

α “
eb∆ ´ 1

b
, β “ e´b∆

3-step initialization

§ Homogeneous Hawkes for the reproduction parameters α and β
(hawkesbow R package [Che21])

§ Poisson-HMM for the rates µ1, . . . , µQ

§ Correction µk Ñ rµk to account for reproduction rate
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Backup

Backup: GoF

Change-time for the recording of bat cries over one night:

Q “ 1 Q “ 2 Q “ 3 Q “ 4
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