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Introduction

Point process

Reminder.

> (Tk)k=>1 a random collection of points
> Count process N(t) = >}, -, I{Tx < t}

> Intensity function A(t): immediate probability of observing an event at time t
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Introduction

Point process

Reminder.

> (Tk)k=>1 a random collection of points

> Count process N(t) = >}, -, I{Tx < t}

> Intensity function A(t): immediate probability of observing an event at time t

Examples

> Homogeneous Poisson process: A(t) = A

> Heterogeneous Poisson process: A(t) = deterministic function

> Hawkes process: A(t) = random function of the past
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Introduction

Segmentation (& classification) of a point process

Aim
1. Propose a set of reasonably realistic models;
2. Design an (efficient) algorithm to get the parameter estimates;

3. Choose among the models.
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Introduction

Segmentation (& classification) of a point process

Aim
1. Propose a set of reasonably realistic models;
2. Design an (efficient) algorithm to get the parameter estimates;

3. Choose among the models.

Example Segmentation of a Poisson process [DBLR23]:

1. Model = Poisson process with piece-wise constant intensity function;
2. Algorithm = dynamic programming in (less than) O(N(T)?);

3. Model selection = cross validation (using thining)
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Segmentation of a Poisson process

Outline

Segmentation of a Poisson process
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Segmentation of a Poisson process

Segmentation of a Poisson process (1/3)

Bat cries?

Model. 2
Change-points s |
(o=)0<m - <7k_1 < 1l(=7k) s |
For t € Iy =]7k—1, 7] 1
A(t) = A 2]

. T T T T T T

— Continuous piece-wise linear cumulated 00 02 04 06 038 10

intensity function

?source: Vigie-Chiro program, Y. Bas, CESCO-MNHN
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Segmentation of a Poisson process

Segmentation of a Poisson process (1/3)

Bat cries?
Model. a |
Change-points 2 |
(T0=)0<7'1"'<7'K,1<1(=7’K) g |
For t € I, =]Tk_1,7'k]: &1
)\(t) = Ak E
o{m—"Leem et e
— Continuous piece-wise linear cumulated 00 02 04 06 08 10

intensity function

?source: Vigie-Chiro program, Y. Bas, CESCO-MNHN

> Segmentation algorithm: find the 'optimal’ (7, A) in a reasonnable time

> Model selection: choose K
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Segmentation of a Poisson process

Segmentation of a Poisson process (2/3)

Classical contrasts (negative log-likelihood, least-
square) are

> additive wrt the segments and

> concave wrt the length of each segment,
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Segmentation of a Poisson process

Segmentation of a Poisson process (2/3)

Classical contrasts (negative log-likelihood, least-
square) are

Tz

> additive wrt the segments and

> concave wrt the length of each segment,

T
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Segmentation of a Poisson process

Segmentation of a Poisson process (2/3)

Classical contrasts (negative log-likelihood, least-
square) are

Tz

> additive wrt the segments and

> concave wrt the length of each segment,

T

—  The set of optimal change points in included in

(T T, Ty Ty T, Ty T, T

— The continuous optimization problem turns into a discrete optimization problem
— Dynamic programming algorithm = O(n?).
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Segmentation of a Poisson process

Segmentation of a Poisson process (3/3)

Lazy model selection. Thining property:

> independent processes with proportional
internsities and common change point;

> cross-validation procedure to choose K.

IModeles statistiques pour des données dépendantes et applications
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Segmentation of a Poisson process

Segmentation of a Poisson process (3/3)

Lazy model selection. Thining property:

> independent processes with proportional
internsities and common change point;

> cross-validation procedure to choose K.

But segmenting a Poisson process
1. Does not provide any classification (although doable);
2. Does not account for the the self exciting (or inhibiting) nature of some processes;

3. Does not fit the scope of RMR2024!.

IModeles statistiques pour des données dépendantes et applications
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(Discrete) Hawkes process

Outline

(Discrete) Hawkes process
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(Discrete) Hawkes process

Univariate Hawkes process

(Conditional) intensity function for the Hawkes process [Haw71]:

At [ He) = A(t) =Xo+ Y. h(t—T)

Tp<t

> Ao = baseline

> h = kernel = influence of past events
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(Discrete) Hawkes process

Self-exciting exponential Hawkes process

At = Do+ Y ae b TH
Te<t

Self exciting: Each event increases the probability of observing another event
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(Discrete) Hawkes process

Self-exciting exponential Hawkes process

A(t) = o + Z ae~P(t=Ti)

Te<t

Self exciting: Each event increases the probability of observing another event

S & T > Exponential kernel function h(t) = ae™ bt
o
N —_— > a > 0 to ensure that A is non negative
AT m R Ty g T > a/b < 1 to ensure stationarity
s W‘\N > Applications: sismology, epidemiology,
]\ neuroscience, ecology, ...
()
RMR'24 11/30
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(Discrete) Hawkes process

Discrete time Hawkes process
Continuous time exponential Hawkes process

A(E) = Xo + Z ae~P(t=Ti)

Te<t
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(Discrete) Hawkes process

Discrete time Hawkes process

Continuous time exponential Hawkes process

A(t) =Xo+ Y, ae (=T

Te<t
Discretization [Seol5]
> = [Tk—l;'rk] with 7, = kA
> Ny = N(I) the number of events on Iy
IK =[(k-04 ‘ kAJ
S
Ty Tk

> Distribution of (Ny)k>17
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(Discrete) Hawkes process

Cluster representation

KKK XK KX XKK K

T T T3 T, T Ts m Ts Ty T

- Immigrants
- Descendants

> Immigrants arrive at rate Ao

> Each immigrant or descendant produces new individuals at rate h(t — T)
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(Discrete) Hawkes process

Discrete time Hawkes process

Ny = N(Ilx) the number of events on Iy = [Tk_1; k]
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(Discrete) Hawkes process

Discrete time Hawkes process

Ny = N(Ilx) the number of events on Iy = [Tk_1; k]

Count distribution

A
Ne S B+ Y > Mr(h) + Re
0<k—1Telg

> By ~ P(XoA) discrete immigrant process
> Mr(ly) ~P (c(a, b, A)e_b(Tk—l_T)) descendants of T < 74_1

> Ri number of descendants of points T € I, within /;

S. Robin Segmentation and classification of a Hawkes process RMR'24 14 /30



(Discrete) Hawkes process

Discrete time Hawkes process

Ny = N(Ilx) the number of events on Iy = [Tk_1; k]

Count distribution

A
Ne S B+ Y > Mr(h) + Re
0<k—1Telg

> By ~ P(XoA) discrete immigrant process
> Mr(ly) ~P (c(a, b, A)e_b(Tk—l_T)) descendants of T < 741

> Ri number of descendants of points T € I, within /;

Approximation when A is small
> Mr(l) ~P (c(a, b, A)e_b(”—l_n«*l)) for T €l = [To—1;7¢]
*» R, ~0
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(Discrete) Hawkes process

Markovian reformulation

Approximation of N

0
Yi | {Ye}eck—1 ~P (u + ) a,BZYk_Z> ,

=1

with © = AgA and «, 8 depending on a, b, A.

{Yk}k=1 is not a Markov chain but
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(Discrete) Hawkes process

Markovian reformulation

Approximation of N

0
Yi | {Yl}égk_l ~P (,u + 2 Oéﬁlyk_g> s

=1

with © = AgA and «, 8 depending on a, b, A.

{Yk}k=1 is not a Markov chain but defining { Uk }x>1
Ui =0, Uk = aYk—1 + BUk_1,

so that
Yil(Uk—1, Yk—1) ~ P (aYi—1 + BUk-1),

then we have that
{(Yi, U st

is a Markov Chain.
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Discrete Markov switching Hawkes process

Outline

Discrete Markov switching Hawkes process

S. Robin Segmentation and classification of a Hawkes process RMR'24 16 /30



Discrete Markov switching Hawkes process

Discrete time Hawkes HMM

Model: @ hidden states
> Hidden path: {Zx}x>1 homogeneous Markov chain with transition matrix 7
> Observed counts: for k > 1, set U; = 0 and

0
Yi [ {Yelesk—1 ~P (Mzk + ) B Yké)

£=1
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Discrete Markov switching Hawkes process

Discrete time Hawkes HMM

Model: @ hidden states
> Hidden path: {Zx}x>1 homogeneous Markov chain with transition matrix 7
> Observed counts: for k > 1, set U; = 0 and

0
Yi [ {Yelesk—1 ~P (Mzk + ) B Yké)

£=1

Assumptions:
> The immigration rate varies with the hidden path

> The number of offspring does not vary with the hidden path
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Discrete Markov switching Hawkes process

Discrete time Hawkes HMM

Model: @ hidden states
> Hidden path: {Zx}x>1 homogeneous Markov chain with transition matrix 7

> Observed counts: for k > 1, set U; = 0 and

0
Yi [ {Yelesk—1 ~P (Mzk + ) B Yké)

£=1

Assumptions:
> The immigration rate varies with the hidden path

> The number of offspring does not vary with the hidden path

Graphical model:

—mme Ly —— L ——— L1 - - - >

U1 {—’ Ug U1 + Ui ---->
NN NS

Yi—1 Y Yit1
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Discrete Markov switching Hawkes process

Inference

Aim: Infer the parameter 6 = ((1q)1<q<Q, ™)

0 =log pg(Y)
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Discrete Markov switching Hawkes process

Inference
Aim: Infer the parameter 6 = ((1q)1<q<Q, ™)
6 =logp(Y)

EM algorithm: [DLR77]
0+ = arg max Eyn [logpa(Y,Z)| Y]
0 —
M vstep E step

> E step: Evaluate £(")(8) = E ) [log po(Y, Z) | Y] (forward-backward recursion)

> M step: Gradient descent, computing Vot (0) by recursion

S. Robin Segmentation and classification of a Hawkes process RMR'24 18/30



Discrete Markov switching Hawkes process

Inference
Aim: Infer the parameter 6 = ((1q)1<q<Q, ™)
6 =logp(Y)

EM algorithm: [DLR77]
0+ = arg max Eyn [logpa(Y,Z)| Y]
0 ~——

M step step

> E step: Evaluate £(")(8) = E ) [log po(Y, Z) | Y] (forward-backward recursion)

> M step: Gradient descent, computing Vot (0) by recursion

By-product: Classification

Zy = argmax Ps{Zx =q| Y}, Z = argmaxpy(Y,Z = z)
q z
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Discrete Markov switching Hawkes process

Synthetic data: classification

States 1 2 3
1 273.7  28.7 14.2
Hawkes HMM 2 37 166.3  96.9
3 4.7 24,7 3538
1 181 122.8 12.8
Poisson HMM 2 136 111.1 53.1
3 45.4 115.2 2226
True Estimated
H §
ER ER
g g
g g1
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Discrete Markov switching Hawkes process

Synthetic data: parameter estimation

Valve

1
F
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Goodness of fit

Outline

Goodness of fit
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Goodness of fit

Model selection

Aim: select the number of hidden states Q
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Goodness of fit

Model selection
Aim: select the number of hidden states Q

Penalized likelihood:

log pg(Y) = Eg[log pe(Y,Z) | Y] +H(pe(Z | Y))

— Standard criterion for discrete time HMM
BIC(Q) = log py, (Y) — pen(6o),
ICL(Q) = log po(Y) — H(py, (Z | Y)) — pen(8q)

with
pen(fig) =  lo(N)(@* +2)

where N = number of time steps (i.e. discretized intervals) = tuning parameter
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Goodness of fit

Goodness-of-fit

Time-change theorem [DVJ03] A sequence (Tk)k>1 is a realization of N if and only if (A(Tk))k>1
is a realization of a homogeneous Poisson process with unit intensity. where

A(t) = Lt Au)du (Compensator)
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Goodness of fit

Goodness-of-fit

Time-change theorem [DVJ03] A sequence (Tk)k>1 is a realization of N if and only if (A(Tk))k>1
is a realization of a homogeneous Poisson process with unit intensity. where

A(t) = J: Au)du (Compensator)

Goodness-of-fit test
> Ho: “(Tk)k>1 is a realization of a HMM-Hawkes process with parameter 6”.

> Kolmogorov-Smirnov test between
(Aé(TkH) - Aé(Tk))k>1

and an exponential distribution £(1).

Comments
> Same test for alternative models (Hawkes, HMM-Poisson)

> Train/test samples (resampling procedure, [RBRGTM14])
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Goodness of fit

Synthetic data: Goodness-of-fit (1/2)

500
L

400
'

00
I

L

=13

HMM-Poisson

200
L

100
I

24

T T T T T
0.0 02 04 06 08

> The test rejects the homogeneous Poisson but does not differentiate the homogeneous
Hawkes process from the HMM-Hawkes process.
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Goodness of fit

Synthetic data: Goodness-of-fit (2/2)

300 350
L I

250
L

mosel

200
I

W Hawkes
B HMM-Hawkes
HMM-Poisson

100 150
I I

50

H
-4
T T T T T
00 02 04 06 08 0 J I I 1

> The test is able to detect that the point process is neither an homogeneous Hawkes nor a
HMM-Poisson process
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Goodness of fit

Preliminary results on bat cries

Back to the recording of bat cries over one night:

ose ooe 0Sz 00z OSL OOL

os o

ose ooe 0sz 00z OSL OOL

os o

ose ooE 0sz 00z OSL OOL

os o

ose ooE 0z 00z OSL OOL

os o

1 or 2, depending on N)

> Q = 2,3, hidden states? (Qgic

> States = behavior (transit, foraging), species?

26 /30
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Future works

Outline
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Future works

Some future works (1/2)

Multivariate Hawkes process: Consider p simultaneous processes (N(i))lsiSp (i.e. p neurons, bat
species, ...)

M
AD() =X+ >0 Y hij(t—T))

i=13J
Tk<t

Exponential version:
i _h(t—T!
hij(t = T{) = ajje P TV

where sparse interaction matrix A = [aj j]1<i j<p

> Interaction network between neurons,
species, ...
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Future works

Some future works (2/2)

Modelling inhibition: Non-linear Hawkes process

At)=¢ | Xo+ D h(t—Ty)

Te<t

with h < 0.
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Future works

Some future works (2/2)

Modelling inhibition: Non-linear Hawkes process

At)=¢ | Xo+ D h(t—Ty)

Test

with h < 0.
Effect of the hidden state: State-dependent parameters o and/or 3

o0
Yi [ {Ye}esk—1 ~P (Mzk + Z az, (/BZk)ZYk—é>
=1
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Future works
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Backup

Backup: Discrete HMM

Conversion formulas from continuous to discrete Hawkes
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Backup

Backup: Discrete HMM

Conversion formulas from continuous to discrete Hawkes

3-step initialization

> Homogeneous Hawkes for the reproduction parameters a and 8
(hawkesbow R package [Che21])

> Poisson-HMM for the rates p1,..., 1o

> Correction px — ik to account for reproduction rate
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Backup

Backup: GoF

Change-time for the recording of bat cries over one night:

Q=1 Q=2 Q=3 Q=4

< .
2 o
E § E
o
o o
§ g
3 3 8
8 8 8 8
$ 8 8 3
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
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