Markov-switching (discrete-time) Hawkes process

S. Robin

joint work with A. Bonnet

LPSM, Sorbonne université

STOR-i, Lancaster, Jun. 2025

'Motivation'

Counting process

Overnight recording of bat cries in continuous time

'Motivation'

Counting process

Overnight recording of bat cries in continuous time

'Motivation'

Counting process

Overnight recording of bat cries in continuous time

Can we detect changes in the distribution of events?

'Motivation'

Counting process

Overnight recording of bat cries in continuous time

- Can we detect changes in the distribution of events?
- Can we associate each time period with some underlying behavior?

'Motivation'

Counting process

Overnight recording of bat cries in continuous time

- Can we detect changes in the distribution of events?
- Can we associate each time period with some underlying behavior?

Modelling. Point process with (latent) Markov switching regime.

Point process

Point process

Reminder.

- $(T_k)_{k \ge 1}$ a random collection of points
- Count process $H(t) = \sum_{k \ge 1} \mathbb{I}\{T_k \le t\}$
- Intensity function $\lambda(t)$: immediate probability of observing an event at time t

Point process

Reminder.

- $(T_k)_{k \ge 1}$ a random collection of points
- Count process $H(t) = \sum_{k \ge 1} \mathbb{I}\{T_k \le t\}$
- Intensity function $\lambda(t)$: immediate probability of observing an event at time t

Examples

- Homogeneous Poisson process: $\lambda(t) \equiv \lambda$
- Heterogeneous Poisson process: $\lambda(t) = deterministic function$
- Hawkes process: $\lambda(t)$ = function of the past events = random function

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process

Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

Univariate Hawkes process

(Conditional) intensity function for the Hawkes process [Haw71]:

$$\lambda(t) = \lambda(t \mid \mathcal{H}_t) = \lambda_0 + \sum_{T_k < t} h(t - T_k)$$

• $\lambda_0 = \text{baseline}$

h = kernel = influence of past events

Self-exciting exponential Hawkes process

$$\lambda(t) = \lambda_0 + \sum_{T_k < t} a e^{-b(t - T_k)}$$

Self exciting: Each event increases the probability of observing another event

Self-exciting exponential Hawkes process

$$\lambda(t) = \lambda_0 + \sum_{T_k < t} a e^{-b(t - T_k)}$$

Self exciting: Each event increases the probability of observing another event

- Exponential kernel function $h(t) = ae^{-bt}$
- $a \ge 0$ to ensure that λ is non negative
- ▶ a/b < 1 to ensure stationarity</p>
- Applications: sismology, epidemiology, vulcanology, neurosciences, ecology, ...

Cluster representation [H074]

- Immigrants arrive at rate λ_0
- Each immigrant or descendant produces new individuals at rate h(t T)

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

Discrete-time Hawkes process

Continuous time exponential Hawkes process

$$\lambda(t) = \lambda_0 + \sum_{T_k < t} a e^{-b(t - T_k)}$$

Discrete-time Hawkes process

Continuous time exponential Hawkes process

$$\lambda(t) = \lambda_0 + \sum_{T_k < t} ae^{-b(t - T_k)}$$

Discretization [Seo15,Kir16,Kir17]

- $I_k = [\tau_{k-1}; \tau_k]$ with $\tau_k = k\Delta$
- $H_k = H(I_k)$ the number of events on I_k

• Distribution of $(H_k)_{k \ge 1}$?

Decomposition of the count

 H_k = number of events on $I_k = [\tau_{k-1}; \tau_k]$

$$H_k \stackrel{\Delta}{=} B_k + \sum_{\ell \leqslant k-1} \sum_{T \in I_\ell} M_T(I_k) + R_k$$

where

•
$$B_k$$
 = number of immigrants within I_k :

$$B_k \sim \mathcal{P}(\mu)$$

with $\mu = \lambda_0 \Delta$,

• $M_T(I_k)$ = number of descendants of $T < \tau_k$ within I_k :

$$M_{T}(I_{k}) \sim \mathcal{P}\left(\int_{I_{k}} ae^{-b(t-T)} dt\right) = \mathcal{P}\left(\alpha e^{-b(\tau_{k}-T)}\right)$$

with $lpha={\it a}({\it e}^{b\Delta}-1)/{\it b}$,

▶ R_k = number of descendants of points $T \in I_k$ within I_k

Discrete time Hawkes process

When Δ is small:

- $R_k \simeq 0$
- For $T \in I_{\ell}$: $e^{-b(\tau_k T)} \simeq e^{-b(\tau_k \tau_{\ell})} = \beta^{k-\ell}$ with $\beta = e^{-b\Delta}$, so

$$\sum_{\ell \leqslant k-1} \sum_{T \in I_{\ell}} M_{T}(I_{k}) \stackrel{\Delta}{\simeq} \sum_{\ell \leqslant k-1} \sum_{T \in I_{\ell}} \mathcal{P}\left(\alpha \beta^{k-\ell}\right) \stackrel{\Delta}{=} \mathcal{P}\left(\sum_{\ell \leqslant k-1} H_{k-\ell} \alpha \beta^{\ell-1}\right)$$

Discrete time Hawkes process

When Δ is small:

- $R_k \simeq 0$
- For $T \in I_{\ell}$: $e^{-b(\tau_k T)} \simeq e^{-b(\tau_k \tau_{\ell})} = \beta^{k-\ell}$ with $\beta = e^{-b\Delta}$, so

$$\sum_{\ell \leqslant k-1} \sum_{T \in I_{\ell}} M_{T}(I_{k}) \stackrel{\Delta}{\simeq} \sum_{\ell \leqslant k-1} \sum_{T \in I_{\ell}} \mathcal{P}\left(\alpha \beta^{k-\ell}\right) \stackrel{\Delta}{=} \mathcal{P}\left(\sum_{\ell \leqslant k-1} H_{k-\ell} \alpha \beta^{\ell-1}\right)$$

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

See [Kir16] for the convergence toward a continuous-time Hawkes process.

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

 $\rightarrow (Y_k)_{k \ge 1}$ is not a Markov chain (infinite memory).

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

 $\rightarrow (Y_k)_{k \ge 1}$ is not a Markov chain (infinite memory).

Markovian representation.

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

 $\rightarrow (Y_k)_{k \ge 1}$ is not a Markov chain (infinite memory).

Markovian representation.

Define

$$U_1 = 0, \qquad \qquad U_k = \sum_{\ell=1}^k \alpha \beta^{\ell-1} Y_{k-\ell},$$

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

 $\rightarrow (Y_k)_{k \ge 1}$ is not a Markov chain (infinite memory).

Markovian representation.

Define

$$U_1 = 0, \qquad \qquad U_k = \sum_{\ell=1}^k \alpha \beta^{\ell-1} Y_{k-\ell},$$

• we have for $k \ge 1$ (with $U_0 = Y_0 = 0$)

 $U_k = \alpha Y_{k-1} + \beta U_{k-1}, \qquad Y_k \mid U_k \sim \mathcal{P}(\mu + U_k).$

S. Robin (Sorbonne université)

Markov-switching (discrete-time) Hawkes process

Lancaster'25

Discrete-time Hawkes process $Y = \{Y_k\}_{k \leq 1}$.

$$\mathbf{Y}_{k} \mid (\mathbf{Y}_{\ell})_{\ell \leqslant k-1} \sim \mathcal{P}\left(\mu + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

 $\rightarrow (Y_k)_{k \ge 1}$ is not a Markov chain (infinite memory).

Markovian representation.

Define

$$U_1 = 0, \qquad \qquad U_k = \sum_{\ell=1}^k \alpha \beta^{\ell-1} Y_{k-\ell},$$

• we have for $k \ge 1$ (with $U_0 = Y_0 = 0$)

$$U_k = \alpha Y_{k-1} + \beta U_{k-1}, \qquad Y_k \mid U_k \sim \mathcal{P}(\mu + U_k).$$

 $\rightarrow ((Y_k, U_k))_{k \ge 1}$ forms a Markov Chain.

S. Robin (Sorbonne université)

Markov-switching (discrete-time) Hawkes process

Lancaster'25

Graphical model

Discrete time Hawkes process.

$$(Y_k)_{k \ge 1} \sim \text{Discrete Hawkes}(\mu, \alpha, \beta)$$

$$U_1 = 0, \qquad \qquad U_k = \alpha Y_{k-1} + \beta U_{k-1}, \qquad \qquad Y_k \sim \mathcal{P}(\mu + U_k)$$

Graphical model

Discrete time Hawkes process.

 $(Y_k)_{k \ge 1} \sim \text{Discrete Hawkes}(\mu, \alpha, \beta)$

$$U_1 = 0, \qquad \qquad U_k = \alpha Y_{k-1} + \beta U_{k-1}, \qquad \qquad Y_k \sim \mathcal{P}(\mu + U_k)$$

Graphical model:

$$p(U_k, Y_k \mid (U_{\ell}, Y_{\ell})_{\ell \leq k-1}) = p(U_k, Y_k \mid U_{k-1}, Y_{k-1})$$

= $p(U_k \mid U_{k-1}, Y_{k-1}) p(Y_k \mid U_k)$

S. Robin (Sorbonne université)

Markov-switching (discrete-time) Hawkes process

Lancaster'25

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process Model

Simulation study

Illustrations

Discussion

Model: Q hidden states

• Hidden path: $(Z_k)_{k \ge 1}$ homogeneous Markov chain with Q states, transition matrix π and initial distribution ν :

 $(Z_k)_{k \ge 1} \sim MC_Q(\nu, \pi)$

Model: Q hidden states

• Hidden path: $(Z_k)_{k \ge 1}$ homogeneous Markov chain with Q states, transition matrix π and initial distribution ν :

$$(Z_k)_{k \ge 1} \sim MC_Q(\nu, \pi)$$

• Observed counts: for $k \ge 1$ and

$$(\mathbf{Y}_k \mid (\mathbf{Y}_\ell)_{\ell \leq k-1}, \mathbf{Z}_k = \mathbf{q}) \sim \mathcal{P}\left(\mu_{\mathbf{q}} + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} \mathbf{Y}_{k-\ell}\right)$$

or, for
$$k \ge 1$$
 (with $U_0 = Y_0 = 0$)

$$U_{k} = \alpha Y_{k-1} + \beta U_{k-1}, \qquad \qquad Y_{k} \mid U_{k} \sim \mathcal{P} \left(\mu_{\mathbb{Z}_{k}} + U_{k} \right)$$

Model: Q hidden states

• Hidden path: $(Z_k)_{k \ge 1}$ homogeneous Markov chain with Q states, transition matrix π and initial distribution ν :

$$(Z_k)_{k \ge 1} \sim MC_Q(\nu, \pi)$$

• Observed counts: for $k \ge 1$ and

$$(Y_k \mid (Y_\ell)_{\ell \leq k-1}, Z_k = q) \sim \mathcal{P}\left(\mu_q + \sum_{\ell=1}^{k-1} \alpha \beta^{\ell-1} Y_{k-\ell}\right)$$

or, for
$$k \ge 1$$
 (with $U_0 = Y_0 = 0$)
 $U_k = \alpha Y_{k-1} + \beta U_{k-1}, \qquad \qquad Y_k \mid U_k \sim \mathcal{P}(\mu_{Z_k} + U_k)$

Assumptions:

- The immigration rate μ varies with the hidden state
- The distribution of the number of offspring (α, β) does not vary with the hidden state

Graphical model:

$$\xrightarrow{\gamma} \begin{array}{c} & & Z_{k-1} \longrightarrow Z_k \longrightarrow Z_{k+1} \longrightarrow Z_{$$

 $(Z_k)_{k \ge 1} = hidden path, \quad (U_k)_{k \ge 1} = memory, \quad (Y_k)_{k \ge 1} = observed process.$

Graphical model:

$$\xrightarrow{\gamma} Z_{k-1} \xrightarrow{Z_k} Z_{k+1} \xrightarrow{Z_{k+1}} Z_{k+1} \xrightarrow$$

 $(Z_k)_{k \geqslant 1} =$ hidden path, $(U_k)_{k \geqslant 1} =$ memory, $(Y_k)_{k \geqslant 1} =$ observed process.

Remarks:

- ▶ The memory of the past is 'stored' in the variable U_k , which can still be computed recursively $(U_k = \alpha Y_{k-1} + \beta U_{k-1})$
- The Markovian property still holds if the influence of the past varies with the hidden state $(\alpha \rightarrow \alpha_q, \beta \rightarrow \beta_q)$.

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

Identifiability

Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$\theta' \neq \theta \qquad \Rightarrow \qquad p_{\theta'}^{Y_1,Y_2,Y_3} \neq p_{\theta}^{Y_1,Y_2,Y_3}.$$

¹The generic technique from [AMR09] does not apply here.
Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$heta'
eq heta \qquad \Rightarrow \qquad p_{ heta'}^{Y_1,Y_2,Y_3}
eq p_{ heta}^{Y_1,Y_2,Y_3}.$$

Sketch of proof. Finite Poisson mixtures are identifiable [Tei61], so, because¹

$$p_{\theta}^{Y_1, Y_2, Y_3}(x, y, z) = \sum_{1 \leq q, \ell, m \leq Q} \nu_q \pi_{q\ell} \pi_{\ell m} \mathcal{P}(x; \mu_q) \mathcal{P}(y; \mu_\ell + \alpha x) \mathcal{P}(z; \mu_m + \alpha \beta x + \alpha y),$$

¹The generic technique from [AMR09] does not apply here.

Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$heta'
eq heta \qquad \Rightarrow \qquad p_{ heta'}^{Y_1,Y_2,Y_3}
eq p_{ heta}^{Y_1,Y_2,Y_3}.$$

Sketch of proof. Finite Poisson mixtures are identifiable [Tei61], so, because¹

$$p_{\theta}^{Y_1, Y_2, Y_3}(x, y, z) = \sum_{1 \leq q, \ell, m \leq Q} \nu_q \pi_{q\ell} \pi_{\ell m} \mathcal{P}(x; \mu_q) \mathcal{P}(y; \mu_\ell + \alpha x) \mathcal{P}(z; \mu_m + \alpha \beta x + \alpha y),$$

1. ν and μ can be identified from $p_{\theta}(Y_1)$, [sum over y and z]

¹The generic technique from [AMR09] does not apply here.

Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$heta'
eq heta \qquad \Rightarrow \qquad p_{ heta'}^{Y_1,Y_2,Y_3}
eq p_{ heta}^{Y_1,Y_2,Y_3}.$$

Sketch of proof. Finite Poisson mixtures are identifiable [Tei61], so, because¹

$$p_{\theta}^{Y_1, Y_2, Y_3}(x, y, z) = \sum_{1 \leq q, \ell, m \leq Q} \nu_q \pi_{q\ell} \pi_{\ell m} \mathcal{P}(x; \mu_q) \mathcal{P}(y; \mu_\ell + \alpha x) \mathcal{P}(z; \mu_m + \alpha \beta x + \alpha y),$$

- 1. ν and μ can be identified from $p_{\theta}(Y_1)$, [sum over y and z]
- 2. then α can be identified from $p_{\theta}(Y_2 \mid Y_1 = 1)$, [fix x = 1, sum over z]

S. Robin (Sorbonne université)

¹The generic technique from [AMR09] does not apply here.

Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$heta'
eq heta \qquad \Rightarrow \qquad p_{ heta'}^{Y_1,Y_2,Y_3}
eq p_{ heta}^{Y_1,Y_2,Y_3}.$$

Sketch of proof. Finite Poisson mixtures are identifiable [Tei61], so, because¹

$$p_{\theta}^{Y_1, Y_2, Y_3}(x, y, z) = \sum_{1 \leq q, \ell, m \leq Q} \nu_q \pi_{q\ell} \pi_{\ell m} \mathcal{P}(x; \mu_q) \mathcal{P}(y; \mu_\ell + \alpha x) \mathcal{P}(z; \mu_m + \alpha \beta x + \alpha y),$$

- 1. ν and μ can be identified from $p_{\theta}(Y_1)$, [sum over y and z]
- 2. then α can be identified from $p_{\theta}(Y_2 \mid Y_1 = 1)$, [fix x = 1, sum over z]
- 3. then β can be identified from $p_{\theta}(Y_3 \mid Y_1 = 1, Y_2 = 0)$, [fix x = 1, y = 0]

¹The generic technique from [AMR09] does not apply here.

Proposition: The model parameter $\theta = (\nu, \pi, (\mu_q)_{1 \leq q \leq Q}, \alpha, \beta)$ is identifiable from the joint distribution $p_{\theta}^{Y_1, Y_2, Y_3}$:

$$heta'
eq heta \qquad \Rightarrow \qquad p_{ heta'}^{Y_1,Y_2,Y_3}
eq p_{ heta}^{Y_1,Y_2,Y_3}.$$

Sketch of proof. Finite Poisson mixtures are identifiable [Tei61], so, because¹

$$p_{\theta}^{Y_1, Y_2, Y_3}(x, y, z) = \sum_{1 \leq q, \ell, m \leq Q} \nu_q \pi_{q\ell} \pi_{\ell m} \mathcal{P}(x; \mu_q) \mathcal{P}(y; \mu_\ell + \alpha x) \mathcal{P}(z; \mu_m + \alpha \beta x + \alpha y),$$

- 1. ν and μ can be identified from $p_{\theta}(Y_1)$, [sum over y and z]
- 2. then α can be identified from $p_{\theta}(Y_2 \mid Y_1 = 1)$, [fix x = 1, sum over z]
- 3. then β can be identified from $p_{\theta}(Y_3 \mid Y_1 = 1, Y_2 = 0)$, [fix x = 1, y = 0]

4. then π can be identified from the joint mixture [sum over z]

$$p_{\theta}^{Y_1,Y_2}(x,y) = \sum_{1 \leq q,\ell \leq Q} \nu_q \pi_{q\ell} \mathcal{P}(x;\mu_q) \mathcal{P}(y;\mu_\ell + \alpha x),$$

which is proven identifiable.

Markov-switching (discrete-time) Hawkes process

Lancaster'25

¹The generic technique from [AMR09] does not apply here.

S. Robin (Sorbonne université)

Aim: Infer the parameter θ

$$\widehat{ heta} = rg\max_{ heta} \log p_{ heta}(Y)$$

Aim: Infer the parameter θ

$$\widehat{ heta} = rg\max_{ heta} \log p_{ heta}(Y)$$

EM algorithm for HMM: [DLR77,CMR05]

$$\theta^{(h+1)} = \underset{\theta}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{\theta^{(h)}}}_{\mathsf{E} \text{ step}} [\log p_{\theta}(Y, Z) \mid Y]$$

► E step: Evaluate $Q(\theta \mid \theta^{(h)}) = \mathbb{E}_{\theta^{(h)}}[\log p_{\theta}(Y, Z) \mid Y]$ (forward-backward recursion)

• M step: Gradient descent, computing $\nabla_{\theta} Q(\theta \mid \theta^{(h)})$ by recursion

S. Robin (Sorbonne université)

Classification:

Marginal:
$$\widehat{Z}_k = \arg \max_q P_{\widehat{\theta}} \{ Z_k = q \mid Y \},$$
Joint (Viterbi): $\widehat{Z} = \arg \max_z P_{\widehat{\theta}} \{ Z = z \mid Y \}$

Classification:

Marginal:
$$\widehat{Z}_k = \arg \max_q P_{\widehat{\theta}} \{ Z_k = q \mid Y \},$$
Joint (Viterbi): $\widehat{Z} = \arg \max_z P_{\widehat{\theta}} \{ Z = z \mid Y \}$

Model selection: Penalized likelihood

$$\begin{aligned} AIC_Q &= \log p_{\hat{\theta}_Q}(Y) - D_Q, \\ BIC_Q &= \log p_{\hat{\theta}_Q}(Y) - D_Q \frac{\log(N)}{2} \end{aligned}$$

with D_Q = number of parameters = 2 + Q^2 and N = number of time bins.

S. Robin (Sorbonne université)

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

S. Robin (Sorbonne université)

Simulation design (Q = 3)

▶ Baseline continuous parameters: $m^0 = [10, 200, 1000], a^0 = 40, b = 160$

Simulation design (Q = 3)

- ▶ Baseline continuous parameters: $m^0 = [10, 200, 1000], a^0 = 40, b = 160$
- Increasing signal: $\lambda = 0.5, 1, 1.5, 2$

$$a = \lambda a^0, \qquad m = \lambda m^0.$$

Simulation design (Q = 3)

- ▶ Baseline continuous parameters: $m^0 = [10, 200, 1000]$, $a^0 = 40$, b = 160
- Increasing signal: $\lambda = 0.5, 1, 1.5, 2$

$$a = \lambda a^0, \qquad m = \lambda m^0.$$

Simulated process:

$$(H_t)_{0 \le t \le 1} \sim Heterogeneous Continuous Hawkes(a, b^0, m)$$

Simulation design (Q = 3)

- ▶ Baseline continuous parameters: $m^0 = [10, 200, 1000]$, $a^0 = 40$, b = 160
- Increasing signal: $\lambda = 0.5, 1, 1.5, 2$

$$a = \lambda a^0, \qquad m = \lambda m^0.$$

Simulated process:

 $(H_t)_{0 \leq t \leq 1} \sim$ Heterogeneous Continuous Hawkes (a, b^0, m)

• Discretized process: n = H(1)

$$N = c n, \qquad c = 0.5, \ 1, \ 2, \ 4,$$
$$Y_k = H\left(\left[\frac{k-1}{N}; \frac{k}{N}\right]\right), \qquad k = 1, \dots N.$$

 \rightarrow not a discrete-time Hawkes process as defined earlier

S. Robin (Sorbonne université)

Simulation results ($Q^* = 3$)

S. Robin (Sorbonne université)

Simulation results ($Q^* = 3$)

Model selection: BIC. Distribution of $BIC_Q - BIC_1$

nb events

nb events

000

20

200

8

2000

8

00

8

2000

000

200

8

2

lam=1.5 c=0.5

2

ş

lam=1.5 c=2

lam=2 c=2

8

9

2

\$

8

0

8

\$

99

ż à. 4 - 5

2 ŝ 4 5

0

8

ş

9

8

ş

2

0

8

\$

99

8

2 3

lam=1.5 c=4

à. à

з

lam=2 c=4

lam=0.5 c=4

Qbic lam=0.5

Qbic lam=1

Qbic lam=1.5

Qbic lam=2

S. Robin (Sorbonne université)

Markov-switching (discrete-time) Hawkes process

Lancaster'25

Simulation results ($Q^* = 3$)

Model selection: AIC. Distribution of $AIC_Q - AIC_1$

lam=1 c=2

nb events

nb events

nb events

lam=1.5 c=0.5

lam=1.5 c=1

lam=1.5 c=2

lam=2 c=2

з

lam=1.5 c=4

Simulation results ($Q^* = 3$)

Simulation conclusions

- Inference easier when more signal (large λ)!!!
- Inference easier with thinner discretization step (large N) But at the price of a higher computational cost
- BIC does not capture the right number of states Sequences not simulated according to the model
- AIC does, with reasonable signal (λ) and discretization (N) Blind to the simulation shift from the model?

Simulation conclusions

- Inference easier when more signal (large λ)!!!
- Inference easier with thinner discretization step (large N) But at the price of a higher computational cost
- BIC does not capture the right number of states Sequences not simulated according to the model
- AIC does, with reasonable signal (λ) and discretization (N) Blind to the simulation shift from the model?

Practical recommendations.

Take N = 2n and use AIC

Illustrations

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

S. Robin (Sorbonne université)

Illustrations

Bat cries

Data set. 1555 overnight recordings all over France

Bat cries

Data set. 1555 overnight recordings all over France

Poisson vs Hawkes / Homogeneous vs HMM. Best model based on AIC

	Poisson	Hawkes	Total
Homogeneous	34	353	387
Hidden Markov	24	1144	1168
Total	58	1497	1555

- ▶ Memory (95%) and heterogeneity (75%) are present in most sequences
- Hawkes-HMM best fits almost 3 sequences out of 4.

Example

- Poisson-HMM needs many state changes to account for self-excitation
- Hawkes-HMM state changes do not correspond to slope changes

Illustrations

States and species

The number of bat species was also recorded

The number of states does not match the number of species

S. Robin (Sorbonne université)

Outline

(Discrete) Hawkes process

Continuous-time Hawkes process Discrete-time Hawkes process Markovian representation

Discrete Markov switching Hawkes process

Model Identifiability & Inference

Simulation study

Illustrations

Discussion

Summary

What we did.

▶ The discretized Hawkes process with exponential kernel is a Markov model

 \Rightarrow The discretized Markov switching Hawkes process with exponential kernel is a hidden Markov model

- The standard EM machinery applies to achieve maximum likelihood inference.
- Not shown: initialization based on existing estimation procedures for homogeneous Hawkes ([Che21],[CL22]) and Poisson HMM.

Discussion

What we did not do.

- Goodness-of-fit: 'Poissonisation' (on-going).
- ▶ Model selection: derive a proper (BIC?) criterion accounting for the discretization step.
- Understand the inferred latent states in terms of animal behavior, biogeography, species, ...

Discussion

What we did not do.

- Goodness-of-fit: 'Poissonisation' (on-going).
- Model selection: derive a proper (BIC?) criterion accounting for the discretization step.
- Understand the inferred latent states in terms of animal behavior, biogeography, species, ...

In parallel. With C. Dion-Blanc, D. Hawat and E. Lebarbier

- Efficient change-point detection ('segmentation') in (marked) Poisson & Hawkes processes.
 → Dynamic programming applies [DBHLR24].
- Segmentation-classification of Poisson processes.

References

Allman, C. Matias, and J.A. Rhodes. Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, pages 3099–3132, 2009.

🗖 heysson. hawkesbow: Estimation of Hawkes Processes from Binned Observations, 2021. R package version 1.0.2.

- F_Cheysson and G. Lang. Spectral estimation of hawkes processes from count data. The Annals of Statistics, 50(3):1722–1746, 2022.
- Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models. Springer, 2005.
- ion-Blanc, D. Hawat, E Lebarbier, and S Robin. Multiple change-point detection for Poisson processes. Technical Report 2302.09103, arXiv, 2024.
- Royal Statistical Society: Series B, 39:1–38, 1977.
- Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83–90, 1971.
- Hawkes and D. Oakes. A cluster process representation of a self-exciting process. Journal of applied probability, 11(3):493–503, 1974.
- Mirchiner. Hawkes and INAR(∞) processes. Stochastic Processes and their Applications, 126(8):2494–2525, 2016.
- Kirchner. An estimation procedure for the hawkes process. Quantitative Finance, 17(4):571–595, 2017.
 - Seol. Limit theorems for discrete hawkes processes. Statistics & Probability Letters, 99:223–229, 2015.
 - Teicher. Identifiability of mixtures. The Annals of Mathematical Statistics, 32(1):244–248, 1961.

Discrete HMM

Conversion formulas from continuous to discrete Hawkes

$$\alpha = \frac{a(e^{b\Delta} - 1)}{b}, \qquad \beta = e^{-b\Delta}$$

Discrete HMM

Conversion formulas from continuous to discrete Hawkes

$$\alpha = \frac{a(e^{b\Delta} - 1)}{b}, \qquad \beta = e^{-b\Delta}$$

3-step initialization

- Homogeneous Hawkes for the reproduction parameters α and β (hawkesbow R package [Che21])
- Poisson-HMM for the rates μ_1, \ldots, μ_Q and transition π
- Correction $\mu_k \rightarrow \widetilde{\mu}_k$ to account for reproduction rate

Simulation results ($Q^* = 1$, N = cn, $m^0 = 400$)

S. Robin (Sorbonne université)

Markov-switching (discrete-time) Hawkes process

Lancaster'25

Simulation results ($Q^* = 1$, N = cn, $m^0 = 400$)

Simulation results ($Q^* = 1$, N = cn, $m^0 = 400$)

Model selection: AIC. Distribution of $AIC_Q - AIC_1$

nb events

8

nb events

з 4 5

4 5

2

0

ę

6

ę

-

w.

ç

6

2 ŝ 4 5

4

lam=0.5 c=4

Qaic lam=0.5

Qaic lam=1

Qaic lam=1.5

Qaic lam=2

lam=1.5 c=2 lam=1.5 c=4 ų ę. 6 8

ę.

÷

2

à. à

з 4 5

ę.

-02

Simulation results ($Q^* = 2$, N = cn, $m^0 = [10, 800]$)

Simulation results ($Q^* = 2$, N = cn, $m^0 = [10, 800]$)

Model selection: BIC. Distribution of $BIC_Q - BIC_1$

3

nb events

1000

8

8

з 5

4

5

à à

ŝ 4 5

lam=2 c=2

lam=1.5 c=2

ຂ

9

\$

8

8

2

8

0

ສ

9

lam=1.5 c=4

à.

з

lam=2 c=4

8

8

ş

99

9

8

8

\$

22

8

,

lam=0.5 c=4

Qbic lam=1

Qbic lam=0.5

Qbic lam=1.5

Qbic lam=2

S. Robin (Sorbonne université)

Simulation results ($Q^* = 2$, N = cn, $m^0 = [10, 800]$)

\$

R

\$

Model selection: AIC. Distribution of $AIC_Q - AIC_1$

lam=1 c=0.5

lam=1.5 c=0.5

à

lam=2 c=0.5

nb events

nb events

nb events

lam=1 c=1

lam=1.5 c=1

lam=2 c=1

з

lam=1 c=2

ş

\$

з

lam=1 c=4

Qaic lam=2

lam=1.5 c=2 lam=1.5 c=4 lam=2 c=2

Simulation results ($Q^* = 2$, N = cn, $m^0 = [10, 800]$)

Model comparison for bat cries sequences

Poisson vs Hawkes / Homogeneous vs HMM. Best model based on BIC

	Poisson	Hawkes	Total
Homogeneous	132	775	907
Hidden Markov	21	627	648
Total	153	1402	1555

States and locations

S. Robin (Sorbonne université)