## species name
## ABIEALB Abies alba
## ABIEGRA Abies grandis
## ABIENOR Abies nordmanniana
## ACERGRA Large Maples (Acer platanoides, Acer pseudoplatanus)
## ACERPET Small Maples (Acer campestre, Acer monspessulanum, Acer negundo, Acer opalus)
## ALNUGLU Alnus glutinosa
Assuming \(K\) clusters, \[\begin{align*} \{Z_i\}_{1 \leq i \leq n} & \text{ iid} & Z_i & \sim \mathcal{M}{(1, \pi)} \\ \{Y_{ij}\}_{1 \leq i, j \leq n} & \text{ indep.} \mid Z & (y_{ij} \mid Z_i=k, Z_j = \ell) & \sim \mathcal{P}{(\lambda_{k\ell})} \\ \end{align*}\]
## pi =
## [1] 0.1569772 0.1763561 0.1569772 0.1957351 0.1375982 0.1763561
## lambda =
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.54121406 1.8546421 0.14089332 0.4999912 1.46245649 0.02263218
## [2,] 1.85464212 9.0286270 1.06850270 3.2910355 6.04727443 0.11062572
## [3,] 0.14089332 1.0685027 0.82166374 2.1761007 0.40263458 0.07793391
## [4,] 0.49999123 3.2910355 2.17610068 5.9646020 1.33637565 0.26547703
## [5,] 1.46245649 6.0472744 0.40263458 1.3363757 3.94065914 0.07080814
## [6,] 0.02263218 0.1106257 0.07793391 0.2654770 0.07080814 0.02940543
## tau1 tau2 tau3 tau4 tau5 tau6
## [1,] 0.001945525 0.990272374 0.001945525 0.001945525 0.001945525 0.001945525
## [2,] 0.001945525 0.990272374 0.001945525 0.001945525 0.001945525 0.001945525
## [3,] 0.001945525 0.001945525 0.001945525 0.001945525 0.990272374 0.001945525
## [4,] 0.001945525 0.001945525 0.001945525 0.990272374 0.001945525 0.001945525
## [5,] 0.001945525 0.001945525 0.990272374 0.001945525 0.001945525 0.001945525
## [6,] 0.001945525 0.001945525 0.990272374 0.001945525 0.001945525 0.001945525
## entropy
## [1,] 0.07040218
## [2,] 0.07040218
## [3,] 0.07040218
## [4,] 0.07040218
## [5,] 0.07040218
## [6,] 0.07040218
## clusterSBM
## treeGroup 1 2 3 4 5 6
## Conipherophyta 7 9 0 0 7 2
## Magnoliphyta 1 0 8 10 0 7
Denote \[ x_{ij} = \text{taxonomic distance between species $i$ and $j$} \]
Assuming \(K\) clusters, \[\begin{align*} \{Z_i\}_{1 \leq i \leq n} & \text{ iid} & Z_i & \sim \mathcal{M}{(1, \pi)} \\ \{Y_{ij}\}_{1 \leq i, j \leq n} & \text{ indep.} \mid Z & (y_{ij} \mid Z_i=k, Z_j = \ell) & \sim \mathcal{P}{(\lambda_{k\ell}\exp(\beta x_{ij}))} \\ \end{align*}\]
## pi =
## [1] 0.3715916 0.1575904 0.2548637 0.2159544
## beta =
## [,1]
## [1,] -0.4220965
## lambda =
## [,1] [,2] [,3] [,4]
## [1,] 23.2956770 0.81937063 4.4070148 11.9195905
## [2,] 0.8193706 0.01170769 0.3393714 0.2412392
## [3,] 4.4070148 0.33937136 1.0924972 2.7247345
## [4,] 11.9195905 0.24123923 2.7247345 7.2684830
## clusterSBM
## clusterSBMreg 1 2 3 4 5 6
## 1 0 9 0 10 0 0
## 2 0 0 0 0 0 8
## 3 8 0 4 0 0 1
## 4 0 0 4 0 7 0
## clusterSBMreg
## treeGroup 1 2 3 4
## Conipherophyta 9 2 7 7
## Magnoliphyta 10 6 6 4
Denote
and suppose \[\begin{align*} \{Z_i\}_{1 \leq i \leq n} & \text{ iid} & Z_i & \sim \mathcal{M}{(1, \pi)} \\ \{Y_{ij}\}_{1 \leq i, j \leq n} & \text{ indep.} \mid Z & (y_{ij} \mid Z_i=k, Z_j = \ell) & \sim \mathcal{P}{(\lambda_{k\ell}\exp(x_{ij}^\intercal \beta))} \\ \end{align*}\]
## 1 2 3 4 5 6
## ICLreg -2895.342 -2079.961 -1969.226 -1930.106 -1946.129 -1966.994
## ICLregAll -2747.774 -2066.117 -1960.134 -1931.177 -1947.083 -1969.800
Including geographic and genetic distances does not yield improvement with respect to taxonomy.
## beta =
## [1] -0.4176394 -0.3261760 0.0868714
## clusterSBMregAll
## clusterSBMreg 1 2 3 4
## 1 0 0 19 0
## 2 0 0 0 8
## 3 12 0 0 1
## 4 0 11 0 0