Data
(Source: Morales & al, 2004, Ecology)
\(T = 214\) locations (‘Easting’,
‘Northing’ in km) of an elk collected every day: \[
P_t = (P^1_t, P^2_t) = \text{location of the animal on day $t$}
\]
## Easting Northing dist_water
## 518 777.410 4992.481 50.00
## 519 776.940 4992.261 424.26
## 520 777.097 4992.512 300.00
## 521 777.022 4992.257 471.70
## 522 776.687 4990.604 276.13
## 523 776.878 4990.676 182.00

Mouvement and speed
Speed of the animal on day \(t\) =
distance traveled on day \(t\) (in
log10 scale): \[
Y_t = \log_{10} \|P_t - P_{t-1}\|
\]


Hidden Markov model
Aim: Distinguish between different regimes of move
(behaviors) along time.
Model
- \(Z_t =\) hidden state (= behavior)
on day \(t\): \[
Z = (Z_t)_{t \geq 1} \sim MC(\nu, \pi)
\]
- \(Y_t =\) observed (log)speed on
day \(t\): \(\{Y_t\}_{t \geq 1} \text{indep.} \mid Z\)
\[
(Y_t \mid Z_t = k) \sim \mathcal{LN}(\mu_k, \sigma^2_k)
\qquad \Leftrightarrow \qquad
(\log Y_t \mid Z_t = k) \sim \mathcal{N}(\mu_k, \sigma^2_k).
\]
Model selection
## converged at iteration 1 with logLik: -238.1488
## converged at iteration 34 with logLik: -217.3594
## converged at iteration 101 with logLik: -199.1833
## converged at iteration 124 with logLik: -185.983
## converged at iteration 115 with logLik: -171.2619
## 1 2 3 4 5
## df 2.0000 7.0000 14.0000 23.0000 34.0000
## logL -238.1488 -217.3594 -199.1833 -185.9830 -171.2619
## BIC -243.5287 -236.1890 -236.8426 -247.8518 -262.7201

Model fit
## converged at iteration 16 with logLik: -217.5029
Hidden Markov model with covariate

Covariates for the transitions
## converged at iteration 98 with logLik: -205.1755
## Initial state probabilities model
## pr1 pr2
## 0 1
##
## Transition model for state (component) 1
## Model of type multinomial (mlogit), formula: ~dist_water
## Coefficients:
## St1 St2
## (Intercept) 0 67.86921
## dist_water 0 -52.64144
## Probalities at zero values of the covariates.
## 3.347921e-30 1
##
## Transition model for state (component) 2
## Model of type multinomial (mlogit), formula: ~dist_water
## Coefficients:
## St1 St2
## (Intercept) 0 36.70694
## dist_water 0 -38.90688
## Probalities at zero values of the covariates.
## 1.143869e-16 1
##
##
## Response parameters
## Resp 1 : gaussian
## Re1.(Intercept) Re1.sd
## St1 -1.110 0.860
## St2 -0.318 0.559

Covariates for the emissions
## converged at iteration 37 with logLik: -194.9703
## Initial state probabilities model
## pr1 pr2
## 0 1
##
## Transition matrix
## toS1 toS2
## fromS1 0.867 0.133
## fromS2 0.021 0.979
##
## Response parameters
## Resp 1 : gaussian
## Re1.(Intercept) Re1.dist_water Re1.sd
## St1 1.175 -2.320 0.336
## St2 -0.353 -0.154 0.582

Covariates for the both
## converged at iteration 71 with logLik: -193.8984
## Initial state probabilities model
## pr1 pr2
## 1 0
##
## Transition model for state (component) 1
## Model of type multinomial (mlogit), formula: ~dist_water
## Coefficients:
## St1 St2
## (Intercept) 0 -3.75950298
## dist_water 0 -0.07191943
## Probalities at zero values of the covariates.
## 0.977235 0.022765
##
## Transition model for state (component) 2
## Model of type multinomial (mlogit), formula: ~dist_water
## Coefficients:
## St1 St2
## (Intercept) 0 0.3591445
## dist_water 0 2.3955662
## Probalities at zero values of the covariates.
## 0.4111667 0.5888333
##
##
## Response parameters
## Resp 1 : gaussian
## Re1.(Intercept) Re1.dist_water Re1.sd
## St1 -0.356 -0.155 0.584
## St2 1.147 -2.304 0.318
