Data

(source: Villéger et al, PLoS One, 2012, see also the mFD R package vignette)

\(n = 45\) fish species (from the Terminos Lagoon, Gulf of Mexico); \(p = 16\) morphological traits :

\[ Y = [Y_{ij}]: n \times p \text{ data matrix} \]

Scaled traits \[ \widetilde{Y}_{ij} = \frac{Y_{ij} - \overline{Y}_j}{\widehat{\sigma}_j}. \]

Principal component analysis

Singular value decomposition of \(\widetilde{Y}\) = eigenvalue decomposition of the empirical correlation matrix of \(Y\)

Probabilistic PCA

\[\begin{align*} \label{eq:factorModel} \{Z_i\}_i & \text{ iid:} & Z_i & \sim \mathcal{N}(0, I_q) \\ \{Y_i\}_i & \text{ indep.} \mid Z: & (Y_i \mid Z_i) & \sim \mathcal{N}(A^\intercal Z_i, \sigma^2 I_p) \end{align*}\]

## lambda =
##  [1] 5.20511221 2.37961176 2.02898869 1.65345227 1.46016972 0.77295469
##  [7] 0.68568306 0.52512096 0.35907309 0.30554429 0.26000287 0.11819477
## [13] 0.08601438 0.06937744 0.05119802 0.03950177
## lambda.hat =
##  [1] 5.20511221 2.37961176 2.02898869 1.65345227 1.46016972 0.77295469
##  [7] 0.68568306 0.52512096 0.35907309 0.30554429 0.26000287 0.07285728
## [13] 0.07285728 0.07285728 0.07285728 0.07285728

Estimated covariance matrix

\[ \widehat{A}^\intercal \widehat{A} + \widehat{\sigma}^2 I_p \]