\(n = 89\) stations, \(p = 30\) fish species \[ Y_{ij} = \text{abundance of species $j$ in station $i$} \]
\(x_i =\) 4 covariates: latitude, longitude, depth, temperature
## Abundances :
## Re_hi An_de An_mi Hi_pl An_lu Me_ae Ra_ra Mi_po Ar_at No_rk
## 356 0 0 0 31 0 108 0 325 0 0
## 357 0 0 0 4 0 110 0 349 0 1
## 358 0 0 0 27 0 788 0 6 0 0
## 359 0 0 1 13 0 295 0 2 0 0
## 363 0 0 0 23 0 13 2 240 0 0
## 364 1 0 0 20 0 97 0 0 0 0
## Covariates :
## Latitude Longitude Depth Temperature
## 356 71.10 22.43 349 3.95
## 357 71.32 23.68 382 3.75
## 358 71.60 24.90 294 3.45
## 359 71.27 25.88 304 3.65
## 363 71.52 28.12 384 3.35
## 364 71.48 29.10 344 3.65
## Scaled covariates :
## Latitude Longitude Depth Temperature
## 356 -1.645660 -1.271961723 0.3006760 1.976666
## 357 -1.483765 -0.993522216 0.8001587 1.785028
## 358 -1.277716 -0.721765258 -0.5317952 1.497572
## 359 -1.520559 -0.503468685 -0.3804368 1.689210
## 363 -1.336587 -0.004505089 0.8304304 1.401753
## 364 -1.366023 0.213791485 0.2249968 1.689210
\[\begin{align*} (Z_i)_{1 \leq i \leq n} & \text{ iid}: & Z_i & \sim \mathcal{N}(0, \Sigma) \\ (Y_{ij})_{1 \leq i \leq n, 1 \leq j \leq p} & \text{ indep.} \mid (Z_i): & (Y_{ij} \mid Z_{ij}) & \sim \mathcal{P}(\exp(x_i^\intercal \beta_j + Z_{ij})) \nonumber \end{align*}\]
library(PLNmodels)
pln <- PLN(Y ~ X)
##
## Initialization...
## Adjusting a full covariance PLN model with nlopt optimizer
## Post-treatments...
## DONE!