## Re_hi An_de An_mi Hi_pl An_lu Me_ae Ra_ra Mi_po Ar_at No_rk
## 356 0 0 0 31 0 108 0 325 0 0
## 357 0 0 0 4 0 110 0 349 0 1
## 358 0 0 0 27 0 788 0 6 0 0
## 359 0 0 1 13 0 295 0 2 0 0
## 363 0 0 0 23 0 13 2 240 0 0
## 364 1 0 0 20 0 97 0 0 0 0
(color = temperature)
Scaled to make regression coefficients comparable
## Latitude Longitude Depth Temperature
## 356 71.10 22.43 349 3.95
## 357 71.32 23.68 382 3.75
## 358 71.60 24.90 294 3.45
## 359 71.27 25.88 304 3.65
## 363 71.52 28.12 384 3.35
## 364 71.48 29.10 344 3.65
## Latitude Longitude Depth Temperature
## 356 -1.645660 -1.271961723 0.3006760 1.976666
## 357 -1.483765 -0.993522216 0.8001587 1.785028
## 358 -1.277716 -0.721765258 -0.5317952 1.497572
## 359 -1.520559 -0.503468685 -0.3804368 1.689210
## 363 -1.336587 -0.004505089 0.8304304 1.401753
## 364 -1.366023 0.213791485 0.2249968 1.689210
4 models :
no covariate
location = lontitude + latitude
environment = depth + temperature
all covariates
## This is packages 'PLNmodels' version 1.0.1
## Use future::plan(multicore/multisession) to speed up PLNPCA/PLNmixture/stability_selection.
## no covariate :
## all covariates :
\[\begin{align*} Y_{ij} & \sim PLN(x_i^\intercal \beta_j, \sigma^2_{j}) \\ \Rightarrow \qquad \widehat{\mu}_{ij} & = x_i^\intercal \widehat{\beta}_j, & \widehat{\lambda}_{ij} & = \mathbb{E}_{\widehat{\theta}}(Y_{ij}) = \exp(\widehat{\mu}_{ij} + \widehat{\sigma}^2_{j}/2) \end{align*}\]
## nb_param loglik BIC ICL
## no covariate 495 -4616.239 -5727.176 -8445.391
## location 555 -4450.964 -5696.561 -8229.577
## environment 555 -4423.346 -5668.943 -8181.25
## all covariates 615 -4304.29 -5684.546 -7828.997
\[ \widehat{y}^{test}_{ij} = \exp(x_i^\intercal \widehat{\beta}^{train}_j + \widetilde{m}^{test}_{ij} + \widetilde{s}^{2, test}_{ij}/2) \]
\[ Y_{ij} \sim PLN(x_i^\intercal \beta_j, \sigma^2_{j}) \qquad \Rightarrow \qquad \widehat{\lambda}^{test}_{ij} := \mathbb{E}_{\widehat{\theta}^{test}}(Y_{ij}) = \exp(x_i^\intercal \widehat{\beta}^{train}_j + \widehat{\sigma}^{2, train}_{j}/2) \]