Data

\(n = 89\) sites, one covariate \(x_i =\) temperature, response variable \(y_i =\) abundance of Gadus morhua (morue)

##     Longitude Depth Temperature Abundance
## 356     22.43   349        3.95       309
## 357     23.68   382        3.75      1041
## 358     24.90   294        3.45       218
## 359     25.88   304        3.65        77
## 363     28.12   384        3.35        13
## 364     29.10   344        3.65       196

Zero inflated Poisson model for the abundance

\[ \{Y_i\}_{1 \leq i \leq n} \text{ iid:} \qquad Y_i \sim \pi \delta_0 + (1-\pi) \mathcal{P}(\lambda) \] with \[ \text{logit}(\pi) = \alpha_0, \quad \log(\lambda) = \beta_0. \] so \[ \theta = (\alpha_0, \beta_0) \] where

library(pscl)
fit1 <- zeroinfl(Abundance ~ 1, data=barents, dist="poisson")
summary(fit1)
## 
## Call:
## zeroinfl(formula = Abundance ~ 1, data = barents, dist = "poisson")
## 
## Pearson residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6728 -0.6728 -0.6728 -0.6523 20.6823 
## 
## Count model coefficients (poisson with log link):
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  4.64679    0.01851   251.1   <2e-16 ***
## 
## Zero-inflation model coefficients (binomial with logit link):
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.7787     0.2283   3.411 0.000647 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 1 
## Log-likelihood: -3181 on 2 Df

Zero inflated Poisson regression model for the abundance

Covariate \(x =\) temperature:

\[ \{Y_i\}_{1 \leq i \leq n} \text{ indep.:} \qquad Y_i \sim \pi_i \delta_0 + (1-\pi_i) \mathcal{P}(\lambda_i) \] where \[ \text{logit}(\pi) = x_i^\intercal \alpha, \quad \log(\lambda) = x_i^\intercal \beta \] so \[ \theta = (\alpha, \beta) \] where

fit2 <- zeroinfl(Abundance ~ Temperature + Depth + Longitude, data=barents, dist="poisson")
summary(fit2)
## 
## Call:
## zeroinfl(formula = Abundance ~ Temperature + Depth + Longitude, data = barents, 
##     dist = "poisson")
## 
## Pearson residuals:
##      Min       1Q   Median       3Q      Max 
## -3.12119 -0.46639 -0.22674 -0.09757 11.45024 
## 
## Count model coefficients (poisson with log link):
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.5834618  0.4375076  -12.76  < 2e-16 ***
## Temperature  2.1133715  0.0648629   32.58  < 2e-16 ***
## Depth        0.0135006  0.0003618   37.32  < 2e-16 ***
## Longitude   -0.0473484  0.0077496   -6.11 9.98e-10 ***
## 
## Zero-inflation model coefficients (binomial with logit link):
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  4.156607   3.702302   1.123    0.262    
## Temperature -1.747246   0.444732  -3.929 8.54e-05 ***
## Depth        0.008987   0.006158   1.459    0.144    
## Longitude   -0.102372   0.085148  -1.202    0.229    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 13 
## Log-likelihood:  -896 on 8 Df

Model comparison

No covariate (\(\mathcal{L}_0\))

## 'log Lik.' -3181.302 (df=2)

Both covariates (\(\mathcal{L}_1\))

## 'log Lik.' -896.0075 (df=8)

Model comparison: \[ LRT = 2(\mathcal{L}_1 - \mathcal{L}_0) \underset{H_0}{\sim} \chi^2_{d_1 - d_0} \]

## LRT = 4570.588  pval = 0