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1 PhD Context

Neutral theory in ecology

The unified neutral theory of biodiversity introduced by Hubbell et al. (2001) emphasizes the impor-
tance of stochastic processes in ecological community structure, and has challenged the traditional
niche-based view of ecology. It has challenged classical theories of species diversity by showing that
patterns of species diversity similar to those observed in nature can be obtained from an extremely
simplified model of community dynamics where each dying individual is immediately replaced by a
new individual (zero-sum) and all individuals of all species are ecologically identical (neutrality).

Formally, the focus is on the stationary distribution of a multivariate birth and death process
N(t) = (N1(t), . . . , NJ(t)), where Nj(t) is the abundance of species j at time , and J is the total
number of species. Under the zero-sum assumption (i.e., fixed sum |N(t)| = n) - and mild hypothesis
on birth and death rates - Hubbell et al. (2001) showed that the multivariate distribution of N given
|N | = n (at equilibrium) is a Dirichlet multinomial distribution DMn(θ1, . . . , θJ). Haegeman and
Etienne (2008) proposed to relax the zero-sum assumption in order to obtain a more realistic model
and they also find a Dirichlet multinomial distribution at equilibrium for the conditional distribution
of N given |N | = n. But they added the assumption of independence between species to obtain an
analytic formula of the sum distribution. Indeed, in this case, it is sufficient to study the abundance
distribution for each species and then use the convolution. They find a negative binomial for each
species and then use the closure under convolution to obtain also a negative binomial distribution
for the sum. In fact, Haegeman and Etienne (2017) proposed to replace the zero-sum assumption
by the assumption of independence between species abundances. In a recent work, Peyhardi et al.
(2024) proposed to generalize this approach in two ways. Firstly, they relaxed both, the zero-sum
assumption and the independence assumption. Secondly, they consider the enlarged family of Pólya
splitting distributions, that includes the Dirichlet multinomial with negative binomial sum, as a special
case. The Pólya urn models offer a nice framework to deal with joint species distribution models for
multi-species abundance data, under the neutral theory of biodiversity.

Mathematical framework

The class of Pólya splitting distributions, introduced by Peyhardi and Fernique (2017) and Jones and

Marchand (2019), is defined as compound distributions N ∼ P [c]
n (θ)∧n L, meaning that the sum |N |

follows the univariate distribution L and N given |N | = n follows the multivariate Pólya distribution.
Let us briefly recall the definition of a multivariate Pólya distribution in terms of urn models.
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Pólya urn model One urn initially contains θj balls of the color j for j = 1, . . . , J . At each
draw, one ball is drawn at random and then replaced with c additional balls of the same color, where
c ∈ {−1, 0, 1}. This procedure is repeated n times and focus is made on the multivariate count
N = (N1, . . . , NJ) of drawn balls for each color. Knowing the number n of draws, the conditional
count distribution of N given |N | = n is known as the multivariate Pólya distribution, denoted by

P [c]
n (θ) with θ ∈ ΘJ

c (where Θ = N for c = −1 and Θ = R+ otherwise). As expressed by Peyhardi
(2023), if we denote

a
[c]
θ (n) =

∏n−1
k=0(θ + ck)

n!
1θ+cn≥0,

then the probability mass function (pmf) of a multivariate Pólya distribution P [c]
n (θ) takes the following

form

P|N |=n (N = n) =
1

a
[c]
|θ|(n)

J∏
j=1

a
[c]
θj
(nj).

The mulyivariate Pólya distribution turns out to be the multivariate hyergeometric distribution Hn(θ)
when c = −1 (without replacement), the multinomial distribution Mn(π) when c = 0 (with replace-
ment meaning independent draws) and the Dirichlet multinomial distribution DMn(θ) when c = 1
(with reinforcement).

Remarkable Pólya splitting distributions Properties of Pólya splitting distributions are related
to the choice of the sum distribution L. For instance the covariance between Ni and Nj (with (i, j) ∈
{1, . . . , J}2 and i ̸= j) is given by

Cov(Ni, Nj) =
θiθj

|θ|2(|θ|+ c)

[
(µ2 − µ2

1)|θ| − cµ2
(1)

]
, (1)

where µk is the factorial moment of order k of the sum distribution L. It implies that the sign of
covariance between any pair (i, j) is driven by the moments of the sum; see Table 1 for some examples.
This table summarizes nine Pólya splitting distributions based on three remarkable choices for the
sum distribution L (Pólya, Power Series and Inverse Pólya); see (Peyhardi, 2023) for details. An
important property of these multivariate count distributions is the closure under addition, i.e., for any
species pair (i, j) we have

Ni ∼ L(θi)
Nj ∼ L(θj)

}
Ni +Nj ∼ L(θi + θj).

This concept generalizes the closure under convolution since the independence is not required.

Sum
Split Hypergeometric Multinomial Dirichlet multinomial Covariance

c = −1 c = 0 c = 1 sign

Pólya Hn(θ) ∧
n
Hm(|θ|, γ) Mn(θ) ∧

n
Bm(p) DMn(θ) ∧

n
βBm(|θ|, γ) negative

Power series Hn(θ) ∧
n
B|θ|(p) Mn(θ) ∧

n
P(λ) DMn(θ) ∧

n
NB(|θ|, p) null

Inverse Pólya Hn(θ) ∧
n
βB|θ|(a, b) Mn(θ) ∧

n
NB(a, p) DMn(θ) ∧

n
βNB(|θ|, a, b) positive

Table 1: Nine remarkable Pólya splitting distributions with different split distributions (columns) and
different sum distributions (rows).

Multivariate birth-death processes Peyhardi et al. (2024) exhibited the birth and death rates
assumptions that lead to the multivariate Pólya distribution at equilibrium. The master equation
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describing the behavior of the multivariate jump process N(t) is given by

∂pn(t)

∂t
=

J∑
j=1

pn−ej (t)q
−
j (n− ej) + pn+ej (t)q

+
j (n+ ej)− pn+ej (t){q−j (n) + q+j (n)}

where q−j (n) (resp. q+j (n)) denotes the jumping rate from n to n− ej (resp. to n+ ej), ej denotes
the indicator vector of the jth element and pn(t) = P{N(t) = n} (resp. pn = P (N = n)) denotes
the pmf at time t (resp. the pmf at stationary state). Assume that there exists some parameters
c ∈ {−1, 0, 1} and θ = (θ1, . . . , θJ) ∈ ΘJ

c and two non-negative functions s+ and s− such that

q+j (n) = s+(|n|)(θj + cnj)1θj+cnj≥0,

q−j (n) = s−(|n|)nj .
(2)

The birth-deah rate qj(n) := q+j (n)/q
−
j (n+ ej) thus becomes

qj(n) = s(|n|)θj + cnj

nj + 1
1θj+cnj≥0 (3)

where s(n) = s+(n)
s−(n+1)

for all n ∈ N. It can be seen that this parametric assumption (3) respects

the Kolmogorov’s criterion qi(n)qj(n+ ei) = qj(n)qi(n+ ej), and thus leads to a reversible process.

Remarking that
∏n−1

k=0
θ+ck
k+1 = a

[c]
θ (n) we add the following assumption on s(n) in order to obtain a

well defined stationary distribution:

∑
n≥0

a
[c]
θ (n)

n−1∏
k=0

s(k) < ∞. (4)

Theorem 1 Assume that the hypothesis (3) and (4) hold then

• the stationary distribution of N(t) is the Pólya splitting distribution P [c]
n (θ) ∧

n
L

• L is the stationary distribution of a univariate process with birth/death ratio equal to q(n) =

s(n)r
[c]
|θ|(n), more precisely we have P (|N | = n) ∝ a

[c]
|θ|(n)

∏n−1
k=0 s(k).

Using Theorem 1, the parametric form of jumping rates leading to the nine remarkable distributions
of Table 1 are easily obtained (see Table 2).

Sum
Split Hypergeometric Multinomial Dirichlet multinomial Covariance

c = −1 c = 0 c = 1 sign

Pólya
m− |n|

γ −m+ |n|+ 1

m− |n|
γ

m− |n|
γ +m− |n| − 1

negative

Power series α α α null

Inverse Pólya
a+ |n|

|θ|+ b− |n| − 1

a+ |n|
|θ|+ b

a+ |n|
|θ|+ b+ a+ |n|+ 1

positive

Table 2: Parametric form of s(|n|) and thus of jumping rates qj(n) leading to the nine remarkable
Pólya splitting distribution of Table 1 at equilibrium.
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2 PhD subject

Our aim is to describe the boundaries of the neutral theory. Inside the boundaries, the class of model
that are closed under addition seems to play a central role. This property could facilitate the addition
of speciation in the birth-death process. Outside the boundaries, the class of tree Pólya splitting
models, introduced by Valiquette et al. (2024), generalizes the class of Pólya splitting models and does
not share the neutral assumptions (not invariant under permutation of species). We propose various
areas of investigations, both in probability and in statistics.

2.1 Closure under thinning operator

The closure under addition in Pólya splitting model is equivalent to the closure under the Pólya
thinning operator. Thinning operation is a stochastic operation that shrinks a random count variable
into a smaller one. This kind of random operation has been intensively studied during the seventies
to characterize some count distributions, such as the Poisson distribution using the binomial thinning
operator (also named binomial damage model). Then, the closure under thinning operator has been
studied in order to define some classes of integer valued autoregressive (INAR) models for count time
series. Joe (1996) related the closure under thinning operation to the closure under convolution. More
recently, Puig and Valero (2007) characterized the distributions that are closed under the binomial
thinning operation. Generalize this result for the class of Pólya thinning operators would allow us to
characterize the Pólya splitting distributions (neutral theory) that share the closure under addition.

2.2 Inference of Pólya splitting models

The log-likelihood of a Pólya splitting model is decomposing into two parts according to sum and
split respectively. If parameters of both parts are different, then both likelihoods can be maximized
separately. The specific models described in Table 1 (in the cases c = −1 and c = 1) assume a contrast
between parameters of sum and split models. This contrast is necessary to obtain the property of
closure under addition. Additionally, these models must be considered in a regression context since the
environmental variables must be taken into account in ecological application perspectives. Therefore,
the formalism of the multivariate link function must be established, as well as the corresponding
inference procedure. Until now, the inference of the multinomial (c = 0) and Dirichlet multinomial
(c = 1) regression models have been formalized by Zhang et al. (2017), only for the canonical link
function, without considering the sum as random variable.

The candidate should have a strong background in probability and statistics. An interest for
counting stochastic processes and statistical modeling would also be welcome, as well as an experience in
(R-)programming. An interest in ecological applications and biological processes, will be appreciated.
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