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Outline

1 – Models with latent variables in ecology (statistical ecology)

2 – Variational inference for incomplete data models (statistics)

3 – Variational inference for species abundances and network models (statistical ecology)

4 – Beyond variational inference (statistics)
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Algorithmic improvements

Algorithmic improvements

Borrowed from many fields.

I Optimization: generic stochastic gradient descent (#21) or more dedicated approaches
[HBWP13]

I Bayesian inference: Variational tempering [MMA+16]

I Machine learning: Variational autoencoders [KW14,KW19]

→ use neural networks to learn the variational parameters with more flexibility

S. Robin 4 - Beyond variational inference Luxembourg, Dec’20 5 / 18



Guaranties about variational estimates

Outline

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ...
Frequentist inference
Bayesian inference

Conclusion (?)

S. Robin 4 - Beyond variational inference Luxembourg, Dec’20 6 / 18



Guaranties about variational estimates

Statistical guarantees: no big picture

Accuracy of variational estimates.

I Most often assessed empirically (numerical simulations) see e.g. #22

’Negative’ results.

I VEM estimates 6= stationary point of the likelihood function [GB05]

I Too small posterior variance provided by variational Bayes [WT05,MT07,CM07]

Balanced results.

I Mean-field approximation provides consistent estimates (binary SBM affiliation: [ZZ20])

I Naive implementation may yield instabilities [GJM19,ZZ20]

Positive results.

I Some results for specific models [HOW11]

I Some attempts for a general theory via M-estimation [WM19]

I Most studied case: mean-field VEM binary stochastic block-model (see next)
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Guaranties about variational estimates

Binary stochastic block-model

A series of results: [CDP12,BCCZ13,MM15,ZZ20]

I Consistency of variational estimates

I Asymptotic normality of variational estimates

I Class recovery (node classification, including LBM)

Why does it work? Theorem 3.1 in [CDP12] states that

P

∑
z 6=z∗

pθ(Z = z | Y )

pθ(Z = z∗ | Y )
> t

 = O
(
ne−κnt

)
uniformly in z∗, with κ = κ(θ).

I Intuition: pθ(Z | Y ) is asymptotically Dirac, which belongs to Q = Qfact .

I The ’largest gap’ algorithm [CDR12] takes advantage of a similar concentration #23

I The proofs do not easily adapt to other VEM
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Combining variational inference with ... Frequentist inference

Frequentist inference

Maximum likelihood inference.
θ̂MLE = arg max

θ
log pθ(Y )

is intractable because the likelihood involves an integration over the latent Z

PLN: log pθ(Y ) =
∑
i

log

∫
Rp

pΣ(Zi )
∏
j

pβ(Yij | Zij ) dZi



SBM: log pθ(Y ) = log

 ∑
Z∈[K ]n

∏
i

pπ(Zi )
∏
i,j

pα,β(Yij | Zi ,Zj )



The (log-)likelihood is far from being the only admissible estimation function

→ think, e.g., of M-estimation
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Combining variational inference with ... Frequentist inference

Composite likelihood

Sum of partial likelihoods:

PLN: θ̂CL = arg max
θ

∑
i

∑
j,k

log pθ(Yij ,Yik ) only requires

∫
R2

SBM: θ̂CL = arg max
θ

∑
i,j,k

log pθ(Yij ,Yik ,Yjk ) only requires
∑

Z∈[K ]3

→ Generic results (consistency, asymptotic normality) exist for θ̂CL [VRF11] + see [AM12] for
binary SBM

Practical implementation.

I EM algorithms can be designed to maximize composite likelihoods

I Getting θ̂CL is still demanding (many terms in the sum: np2 for PLN, n3 for SBM)

I θ̂VEM usually provides a (very) good starting point
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Combining variational inference with ... Bayesian inference

Bayesian inference

Reminder.

I Prior: p(θ) θPLN = (β,Σ), θSBM = (π, α, β)

I Latent: p(Z | θ)

I Observed: p(Y | Z , θ)

I Posterior:

p(θ,Z | Y ) =
p(θ) p(Z | θ) p(Y |, θ,Z)

p(Y )

Sampling methods.

I Monte-Carlo: sample (θb,Zb)
iid∼ p(θ,Z | Y )

I MCMC: construct a Markov chain with p(θ,Z | Y ) as a stationary distribution

I Importance sampling: (θb,Zb)
iid∼ q(θ,Z) and reweight each draw with weight

wb =
p(θb,Zb | Y )

q(θb,Zb)

I Sequential Monte-Carlo: construct a sequence of distribution going from q(θ,Z) to
p(θ,Z | Y )
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Combining variational inference with ... Bayesian inference

Sequential Monte-Carlo sampling

Principle. [DDJ06] U = (θ,Z)

I given pstart(U)

I aiming at ptarget(U) = p(U | Y )

I sample from a sequence of distributions

pstart = p0, p1, . . . , pH−1, pH = ptarget

with

ph(U) ∝ pstart(U)1−ρhptarget(U)ρh

and 0 = ρ0 < ρ1 < · · · < ρH = 1

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

see #24 for tuning of the ρh

Most often: pstart = pprior (long way to the posterior)

VBEM: directly use pstart = pVBEM

VEM: use (approximate) Louis formulas [Lou82] to derive pstart = pVEM [DR19]
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Combining variational inference with ... Bayesian inference

Back to the tree interaction network

Yij = number of shared parasites
xij = taxonomic distance
Yij ∼ P(exp(xᵀij β + αZiZj

))

Estimates:

K̂ICL = 4 β̂ = −.317

I Taxonomy (partially)

explains the links (smaller K̂)

I Distant species share less
parasites (β̂ < 0)

I The remaining structure is
not related to taxonomy

No covariate: K̂ICL = 7
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Combining variational inference with ... Bayesian inference

Tree network: model selection

Model selection.

I Number of groups K

I Set S of relevent covariates: S ⊂ {taxonomy, geography, phylogeny}

Choosing K for a given S:

p(K | Y , S) ∝ p(Y | S,K)

here : S = (taxonomy, geography)

Averaging over K : #26
●

●

●

● ● ●

1 2 3 4 5 6

−
22

00
−

18
00

−
14

00

●

●

●

●
●

●

●

●

●

● ● ●

log p(Y | S,K)

J
θ̂,q̂

vICL

Variable selection. p(S | Y ) =
∑

K p(S ,K | Y )

P{x = (taxo., geo.) | Y } ' 70%, P{x = (taxo.) | Y } ' 30%
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Combining variational inference with ... Bayesian inference

Tree network: significance

Parameter posterior distribution for S = (taxonomy, geography, phylogeny):

taxonomy geography phylogeny

−0.65 −0.60 −0.55 −0.50
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0

5
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−0.05 0.00 0.05 0.10

0
5
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20

Legend: qVEM(βj ), p(βj | S , K̂(S),Y ), p(βj | S,Y )

Why so many steps to go from qVEM(βj ) to p(βj | Y ) ?

Correlation between estimates. (β1, β2) (β1, β3) (β2, β3)
pVEM(β) −0.012 0.021 0.318
p(β | Y ) −0.274 −0.079 −0.088

+ p(Z | Y ) in #27
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Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ...
Frequentist inference
Bayesian inference
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Conclusion (?)

Conclusion

Latent variable models (in ecology).

I Very useful (hope you’re convinced)

Variational inference (computational side).

I Computationally efficient

I Reasonably easy to implement (hope you’re convinced too)

Variational inference (theoretical side).

I Generic analysis of variational estimation still to do

I Alternatively: combine with other inference methods to combine computational efficiency
with pre-existing statistical guarantees
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Reparametrization trick

Denoting by ψ the variational parameter, The VE step aims at minimizing

KL[qψ(Z)‖pθ(Z | Y )] = Eqψ log
qψ(Z)

pθ(Z | Y )

Stochastic gradient descent requires an unbiased estimate of the gradient ∇ψEqψ (·) ...

which is not provided by sampling Zb iid∼ qψ to estimate Eqψ .

Trick [KW14,KW19]. Suppose there exist a fix distribution q0 and a function f , such that1

ε ∼ q0 ⇒ Z = f (ε, ψ) ∼ qψ ,

Then, sampling εb
iid∼ q0 provides an unbiased estimate of the gradient:

∇ψ Eqψ log
qψ(Z)

pθ(Z | Y )
' ∇ψ

(
1

B

∑
b

log
qψ(f (εb, ψ))

pθ(f (εb, ψ) | Y )

)

Back to #5

1Think of q0 = N (0, I ), ψ = (µ,Σ), qψ = N (µ,Σ).
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VBEM for binary SBM

Posterio credibility intervals (CI) [GDR12]: Actual level for π1 (+), γ11 (4), γ12 (◦), γ22 (•)

Width of the posterior CI. π1, γ11, γ12, γ22

→ Width ≈ 1/
√
n for π1 and ≈ 1/n = 1/

√
n2 for γ11, γ12 and γ22.

Back to #7
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Largest gap algorithm

I Degree of a node: Di =
∑

j 6=i Yij

I Mean connection from group k:

γk =
∑
`

π`γk`

I Degree distribution2

(Di | Zi = k) ∼ B(n − 1, γk )

I Concentration of Di/(n − 1) around
γZi

at exponential rate

n = 100
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→ Ensures consistency [CDR12] (including sparse regime)

Back to #8

2Balanced affiliation model = nasty case: πk ≡ 1/K , γkk = γin, γk` = γout ⇒ γk ≡ (γin + (K − 1)γout )/K
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Sequential importance sampling scheme

Consider U = (θ,Z)

Distribution path: set 0 = ρ0 < ρ1 < · · · < ρH−1 < ρH = 1,

ph(U) ∝ pstart(U)1−ρh × ptarget(U)ρh

∝ pstart(U) × r(U)ρh , r(U) =
p(U)p(Y | U)

pstart(U)

Sequential sampling. At each step h, provides

Eh = {(Um
h ,w

m
h )}m = weighted sample of ph

Tune ρh+1 to keep the efficient sample size sufficiently high at each step.

→ Doable because r(U) does not depend on ρ.
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Sequential sampling: in pictures

I pstart = proposal, ptarget = target

I Intermediate distributions pstart = p0, p1,
..., pH = ptarget

I Iteratively:
use ph to get a sample from ph+1
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0
1

2
3

4
5

+ resampling/propagation to avoid complete degeneracy [DR19]

Back to #13
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Backup

Sequential sampling: in pictures

I pstart = proposal, ptarget = target

I Intermediate distributions pstart = p0, p1,
..., pH = ptarget

I Iteratively:
use ph to get a sample from ph+1

step 1: ESS = 0.085

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

+ resampling/propagation to avoid complete degeneracy [DR19]

Back to #13
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Backup

Sequential sampling: in pictures

I pstart = proposal, ptarget = target

I Intermediate distributions pstart = p0, p1,
..., pH = ptarget

I Iteratively:
use ph to get a sample from ph+1

step 2: ESS = 0.052
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+ resampling/propagation to avoid complete degeneracy [DR19]

Back to #13
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Backup

Sequential sampling: in pictures

I pstart = proposal, ptarget = target

I Intermediate distributions pstart = p0, p1,
..., pH = ptarget

I Iteratively:
use ph to get a sample from ph+1

step 3: ESS = 0.078
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+ resampling/propagation to avoid complete degeneracy [DR19]

Back to #13
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Backup

Sequential sampling: in pictures

I pstart = proposal, ptarget = target

I Intermediate distributions pstart = p0, p1,
..., pH = ptarget

I Iteratively:
use ph to get a sample from ph+1

step 4: ESS = 0.16
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+ resampling/propagation to avoid complete degeneracy [DR19]

Back to #13
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Residual ’graphon’
Graphon representation of (π, α). [LR16,DR19]

φK : (0, 1)× (0, 1) 7→ R block wise constant

For a given set S , averaging over K gives

φ̂(u, v) = E (φK (u, v) | Y ,S) =
∑
K

p(K | Y , S)E (φK (u, v) | Y , S ,K)

SBM graphon φ̂ for the tree network Ui vs nb. neighbors
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SMC path

Tree network, S = {taxo., geo.} Simulations
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ρh KL

(
ph(Z) ‖

∏
i

ph(Zi )

)
from [DR19]

Back to #16
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