4 - Beyond variational inference

S. Robin

INRAE / AgroParisTech / univ. Paris-Saclay Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

Outline

1

1-	models with fatent variables in ecology	(statistical ecology)
2 –	Variational inference for incomplete data models	(statistics)
3-	Variational inference for species abundances and network models	(statistical ecology)
4 –	Beyond variational inference	(statistics)

Models with latent variables in ecology

(statistical acalemy)

Part 4

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ... Frequentist inference Bayesian inference

Conclusion (?)

Algorithmic improvements

Outline

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ... Frequentist inference Bayesian inference

Conclusion (?)

Algorithmic improvements

Borrowed from many fields.

- Optimization: generic stochastic gradient descent (#21) or more dedicated approaches [HBWP13]
- Bayesian inference: Variational tempering [MMA⁺16]
- Machine learning: Variational autoencoders [KW14,KW19]
 - ightarrow use neural networks to learn the variational parameters with more flexibility

Outline

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ... Frequentist inference Bayesian inference

Conclusion (?)

Accuracy of variational estimates.

▶ Most often assessed empirically (numerical simulations) see e.g. #22

Accuracy of variational estimates.

▶ Most often assessed empirically (numerical simulations) see e.g. #22

'Negative' results.

- ▶ VEM estimates ≠ stationary point of the likelihood function [GB05]
- ► Too small posterior variance provided by variational Bayes [WT05,MT07,CM07]

Accuracy of variational estimates.

▶ Most often assessed empirically (numerical simulations) see e.g. #22

'Negative' results.

- ▶ VEM estimates ≠ stationary point of the likelihood function [GB05]
- ► Too small posterior variance provided by variational Bayes [WT05,MT07,CM07]

Balanced results.

- Mean-field approximation provides consistent estimates (binary SBM affiliation: [ZZ20])
- Naive implementation may yield instabilities [GJM19,ZZ20]

Accuracy of variational estimates.

▶ Most often assessed empirically (numerical simulations) see e.g. #22

'Negative' results.

- ▶ VEM estimates ≠ stationary point of the likelihood function [GB05]
- ► Too small posterior variance provided by variational Bayes [WT05,MT07,CM07]

Balanced results.

- Mean-field approximation provides consistent estimates (binary SBM affiliation: [ZZ20])
- Naive implementation may yield instabilities [GJM19,ZZ20]

Positive results.

- Some results for specific models [HOW11]
- ▶ Some attempts for a general theory via *M*-estimation [WM19]
- Most studied case: mean-field VEM binary stochastic block-model (see next)

Binary stochastic block-model

A series of results: [CDP12,BCCZ13,MM15,ZZ20]

- Consistency of variational estimates
- Asymptotic normality of variational estimates
- Class recovery (node classification, including LBM)

Binary stochastic block-model

A series of results: [CDP12,BCCZ13,MM15,ZZ20]

- Consistency of variational estimates
- Asymptotic normality of variational estimates
- Class recovery (node classification, including LBM)

Why does it work? Theorem 3.1 in [CDP12] states that

$$P\left(\sum_{z\neq z^*}\frac{p_{\theta}(Z=z\mid Y)}{p_{\theta}(Z=z^*\mid Y)}>t\right)=O\left(ne^{-\kappa nt}\right)$$

uniformly in z^* , with $\kappa = \kappa(\theta)$.

Binary stochastic block-model

A series of results: [CDP12,BCCZ13,MM15,ZZ20]

- Consistency of variational estimates
- Asymptotic normality of variational estimates
- Class recovery (node classification, including LBM)

Why does it work? Theorem 3.1 in [CDP12] states that

$$P\left(\sum_{z\neq z^*}\frac{p_{\theta}(Z=z\mid Y)}{p_{\theta}(Z=z^*\mid Y)}>t\right)=O\left(ne^{-\kappa nt}\right)$$

uniformly in z^* , with $\kappa = \kappa(\theta)$.

- ▶ Intuition: $p_{\theta}(Z \mid Y)$ is asymptotically Dirac, which belongs to $Q = Q_{fact}$.
- ▶ The 'largest gap' algorithm [CDR12] takes advantage of a similar concentration #23
- The proofs do not easily adapt to other VEM

Combining variational inference with ...

Outline

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ... Frequentist inference Bayesian inference

Conclusion (?)

Frequentist inference

Frequentist inference

Maximum likelihood inference.

$$\widehat{ heta}_{\textit{MLE}} = rg\max_{ heta} \, \log p_{ heta}(Y)$$

is intractable because the likelihood involves an integration over the latent Z

PLN:
$$\log p_{\theta}(Y) = \sum_{i} \log \left(\int_{\mathbb{R}^{p}} p_{\Sigma}(Z_{i}) \prod_{j} p_{\beta}(Y_{ij} \mid Z_{ij}) dZ_{i} \right)$$

SBM:
$$\log p_{\theta}(\mathbf{Y}) = \log \left(\sum_{Z \in [K]^n} \prod_i p_{\pi}(Z_i) \prod_{i,j} p_{\alpha,\beta}(\mathbf{Y}_{ij} \mid Z_i, Z_j) \right)$$

Frequentist inference

Maximum likelihood inference.

$$\widehat{ heta}_{\textit{MLE}} = rg\max_{ heta} \, \log p_{ heta}(Y)$$

is intractable because the likelihood involves an integration over the latent Z

PLN:
$$\log p_{\theta}(Y) = \sum_{i} \log \left(\int_{\mathbb{R}^p} p_{\Sigma}(Z_i) \prod_{j} p_{\beta}(Y_{ij} \mid Z_{ij}) \, \mathrm{d}Z_i \right)$$

SBM:
$$\log p_{\theta}(\mathbf{Y}) = \log \left(\sum_{Z \in [K]^n} \prod_i p_{\pi}(Z_i) \prod_{i,j} p_{\alpha,\beta}(\mathbf{Y}_{ij} \mid Z_i, Z_j) \right)$$

The (log-)likelihood is far from being the only admissible estimation function

 \rightarrow think, e.g., of *M*-estimation

S. Robin

Composite likelihood

Sum of partial likelihoods:

$$\mathsf{PLN:} \qquad \widehat{\theta}_{CL} = \arg\max_{\theta} \sum_{i} \sum_{j,k} \log p_{\theta}(Y_{ij}, Y_{ik}) \qquad \quad \mathsf{only requires } \int_{\mathbb{R}^2}$$

$$\mathsf{SBM:} \qquad \widehat{\theta}_{\mathit{CL}} = \arg\max_{\theta} \sum_{i,j,k} \log p_{\theta}(Y_{ij}, Y_{ik}, Y_{jk}) \qquad \text{ only requires } \sum_{Z \in [\mathcal{K}]^3}$$

 \rightarrow Generic results (consistency, asymptotic normality) exist for $\widehat{\theta}_{CL}$ [VRF11] + see [AM12] for binary SBM

Composite likelihood

Sum of partial likelihoods:

$$\mathsf{PLN:} \qquad \widehat{\theta}_{CL} = \arg\max_{\theta} \sum_{i} \sum_{j,k} \log p_{\theta}(Y_{ij}, Y_{ik}) \qquad \quad \mathsf{only requires } \int_{\mathbb{R}^2}$$

$$\mathsf{SBM:} \qquad \widehat{\theta}_{\mathit{CL}} = \arg\max_{\theta} \sum_{i,j,k} \log p_{\theta}(Y_{ij}, Y_{ik}, Y_{jk}) \qquad \text{ only requires } \sum_{Z \in [\mathcal{K}]^3}$$

 $\rightarrow\,$ Generic results (consistency, asymptotic normality) exist for $\widehat{\theta}_{CL}$ [VRF11] + see [AM12] for binary SBM

Practical implementation.

- EM algorithms can be designed to maximize composite likelihoods
- Getting $\hat{\theta}_{CL}$ is still demanding (many terms in the sum: np^2 for PLN, n^3 for SBM)
- $\widehat{\theta}_{VEM}$ usually provides a (very) good starting point

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Sampling methods.

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Sampling methods.

• Monte-Carlo: sample $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} p(\theta, Z \mid Y)$

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Sampling methods.

- Monte-Carlo: sample $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} p(\theta, Z \mid Y)$
- MCMC: construct a Markov chain with $p(\theta, Z \mid Y)$ as a stationary distribution

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Sampling methods.

- Monte-Carlo: sample $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} p(\theta, Z \mid Y)$
- MCMC: construct a Markov chain with $p(\theta, Z \mid Y)$ as a stationary distribution
- ▶ Importance sampling: $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} q(\theta, Z)$ and reweight each draw with weight

$$w^b = rac{p(heta^b, Z^b \mid Y)}{q(heta^b, Z^b)}$$

Reminder.

- ▶ Prior: $p(\theta)$ $\theta_{PLN} = (\beta, \Sigma), \quad \theta_{SBM} = (\pi, \alpha, \beta)$
- Latent: $p(Z \mid \theta)$
- Observed: $p(Y | Z, \theta)$
- Posterior:

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid, \theta, Z)}{p(Y)}$$

Sampling methods.

- Monte-Carlo: sample $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} p(\theta, Z \mid Y)$
- MCMC: construct a Markov chain with $p(\theta, Z \mid Y)$ as a stationary distribution
- ▶ Importance sampling: $(\theta^b, Z^b) \stackrel{\text{iid}}{\sim} q(\theta, Z)$ and reweight each draw with weight

$$w^b = \frac{p(\theta^b, Z^b \mid Y)}{q(\theta^b, Z^b)}$$

Sequential Monte-Carlo: construct a sequence of distribution going from $q(\theta, Z)$ to $p(\theta, Z \mid Y)$

Principle. [DDJ06] $U = (\theta, Z)$

Principle. [DDJ06] $U = (\theta, Z)$

▶ given $p_{start}(U)$

Principle. [DDJ06] $U = (\theta, Z)$

- ▶ given $p_{start}(U)$
- aiming at $p_{target}(U) = p(U \mid Y)$

Principle. [DDJ06] $U = (\theta, Z)$

- given $p_{start}(U)$
- aiming at $p_{target}(U) = p(U | Y)$
- sample from a sequence of distributions

 $p_{start} = p_0, p_1, \ldots, p_{H-1}, p_H = p_{target}$

with

$$p_h(U) \propto p_{start}(U)^{1-\rho_h} p_{target}(U)^{\rho_h}$$

and $\mathbf{0}=\rho_{\mathbf{0}}<\rho_{\mathbf{1}}\ <\cdots <\rho_{H}=\mathbf{1}$

see #24 for tuning of the ρ_h

Principle. [DDJ06] $U = (\theta, Z)$

- given $p_{start}(U)$
- aiming at $p_{target}(U) = p(U | Y)$
- sample from a sequence of distributions

 $p_{start} = p_0, p_1, \ldots, p_{H-1}, p_H = p_{target}$

with

$$p_h(U) \propto p_{start}(U)^{1-\rho_h} p_{target}(U)^{\rho_h}$$

and $\mathbf{0}=\rho_{\mathbf{0}}<\rho_{\mathbf{1}}\ <\cdots <\rho_{H}=\mathbf{1}$

see #24 for tuning of the ρ_h

Most often: $p_{start} = p_{prior}$ (long way to the posterior) VBEM: directly use $p_{start} = p_{VBEM}$ VEM: use (approximate) Louis formulas [Lou82] to derive $p_{start} = p_{VEM}$ [DR19]

4 - Beyond variational inference

Back to the tree interaction network

No covariate: $\widehat{K}_{ICL} = 7$

Taxonomic dist.:
$$\widehat{K}_{ICL} = 4$$

S. Robin

Tree network: model selection

Model selection.

- Number of groups K
- Set S of relevent covariates: $S \subset \{taxonomy, geography, phylogeny\}$

Tree network: model selection

Model selection.

- Number of groups K
- Set S of relevent covariates: $S \subset \{taxonomy, geography, phylogeny\}$

Choosing K for a given S:

 $p(K \mid Y, S) \propto p(Y \mid S, K)$

here : S = (taxonomy, geography)

Averaging over K: #26

Tree network: model selection

Model selection.

- Number of groups K
- Set S of relevent covariates: $S \subset \{taxonomy, geography, phylogeny\}$

Variable selection. $p(S | Y) = \sum_{K} p(S, K | Y)$

 $P\{x = (taxo., geo.) \mid Y\} \simeq 70\%, \qquad P\{x = (taxo.) \mid Y\} \simeq 30\%$

Tree network: significance

Parameter posterior distribution for S = (taxonomy, geography, phylogeny):

Tree network: significance

Parameter posterior distribution for S = (taxonomy, geography, phylogeny):

Why so many steps to go from $q_{VEM}(\beta_j)$ to $p(\beta_j | Y)$?

Correlation between estimates.	(β_1,β_2)	(β_1, β_3)	(β_2, β_3)
$p_{VEM}(\beta)$	-0.012	0.021	0.318
$p(\beta \mid Y)$	-0.274	-0.079	-0.088

+ p(Z | Y) in #27

Outline

Algorithmic improvements

Guaranties about variational estimates

Combining variational inference with ... Frequentist inference Bayesian inference

Conclusion (?)

Conclusion (?)

Conclusion

Latent variable models (in ecology).

Very useful (hope you're convinced)

Variational inference (computational side).

- Computationally efficient
- Reasonably easy to implement (hope you're convinced too)

Variational inference (theoretical side).

- Generic analysis of variational estimation still to do
- Alternatively: combine with other inference methods to combine computational efficiency with pre-existing statistical guarantees

References I

- Ambroise and C. Matias. New consistent and asymptotically normal parameter estimates for random-graph mixture models. Journal of the Royal Statistical Society: Series B, 74(1):3-35, 2012.
- Ckel, D. Choi, X. Chang, and H. Zhang. Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. The Annals of Statistics, pages 1922–1943, 2013.
- Elisse, J.-J. Daudin, and L. Pierre. Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Statis., 6:1847–99, 2012.
- Edmannarond, J.-J. Daudin, and S. Robin. Classification and estimation in the stochastic block model based on the empirical degrees. Electron. J. Statis., 6:2574–601, 2012.
- Interpretendent in the second seco
- Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B, 68(3):411–436, 2006.

phonet and S. Robin. Bayesian inference for network Poisson models. Technical Report 1907.09771, arXiv, 2019.

- 🚾 unawardana and W. Byrne. Convergence theorems for generalized alternating minimization procedures. J. Mach. Learn. Res., 6:2049–73, 2005.
- Zal, J.-J. Daudin, and S. Robin. Accuracy of variational estimates for random graph mixture models. Journal of Statistical Computation and Simulation, 82(6):849–862, 2012.
- Ghorbani, H. Javadi, and A. Montanari. An instability in variational inference for topic models. In International conference on machine learning, pages 2221–2231. PMLR, 2019.
- 🔲 Hoffman, D. M Blei, C. Wang, and J. W. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303–1347, 2013.
- 🚚 🕮 II, J. T Ormerod, and MP Wand. Theory of gaussian variational approximation for a Poisson mixed model. Statistica Sinica, pages 369–389, 2011.

References II

- P Kingma and M. Welling. Auto-encoding variational Bayes. Technical Report 1312.6114, arXiv, 2014.
- 📕 Kingma and M. Welling. An introduction to variational autoencoders. Foundations and Trends 🛞 in Machine Learning, 12(4):307–392, 2019.
- 📕 Louis. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, pages 226–233, 1982.
- Tucche and S. Robin. Variational Bayes model averaging for graphon functions and motif frequencies inference in W-graph models. Statistics and Computing, 26(6):1173–1185, 2016.
- Repariadassou and C. Matias. Convergence of the groups posterior distribution in latent or stochastic block models. Bernoulli, 21(1):537–573, 2015.
- S Mandt, J. McInerney, F. Abrol, R. Ranganath, and D. Blei. Variational tempering. In Artificial Intelligence and Statistics, pages 704–712, 2016.
 - McGrory and D. M. Titterington. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 51:5332-67, 2007.
- Varin, N. Reid, and D. Firth. An overview of composite likelihood methods. Statistica Sinica, 21:5–42, 2011.
- Setting and T. H McCormick. Beyond prediction: A framework for inference with variational approximations in mixture models. Journal of Computational and Graphical Statistics, 28(4):778–789, 2019.
- 📲 ang and D. M Titterington. Inadequacy of interval estimates corresponding to variational Bayesian approximations. In AISTATS, 2005.
- Zhang and H. H Zhou. Theoretical and computational guarantees of mean field variational inference for community detection. Annals of Statistics, 48(5):2575–2598, 2020.

Reparametrization trick

Denoting by ψ the variational parameter, The VE step aims at minimizing

$$extsf{KL}[q_{\psi}(Z) \| p_{ heta}(Z \mid Y)] = \mathbb{E}_{q_{\psi}} \log rac{q_{\psi}(Z)}{p_{ heta}(Z \mid Y)}$$

Stochastic gradient descent requires an unbiased estimate of the gradient $\nabla_{\psi} \mathbb{E}_{q_{\psi}}(\cdot) \dots$ which is *not* provided by sampling $Z^{b} \stackrel{\text{iid}}{\sim} q_{\psi}$ to estimate $\mathbb{E}_{q_{\psi}}$.

Trick [KW14,KW19]. Suppose there exist a fix distribution q^0 and a function f, such that¹

$$\epsilon \sim q^0 \qquad \Rightarrow \qquad Z = f(\epsilon, \psi) \sim q_{\psi}$$

Then, sampling $\epsilon^b \stackrel{\text{iid}}{\sim} q^0$ provides an unbiased estimate of the gradient:

$$abla_{\psi} \ \mathbb{E}_{q_{\psi}} \log rac{q_{\psi}(Z)}{p_{ heta}(Z \mid Y)} \simeq
abla_{\psi} \ \left(rac{1}{B} \sum_{b} \log rac{q_{\psi}(f(\epsilon^{b},\psi))}{p_{ heta}(f(\epsilon^{b},\psi) \mid Y)}
ight)$$

Back to #5

¹Think of $q^0 = \mathcal{N}(0, I), \ \psi = (\mu, \Sigma), \ q_{\psi} = \mathcal{N}(\mu, \Sigma).$

S. Robin

VBEM for binary SBM

ightarrow Width $pprox 1/\sqrt{n}$ for π_1 and $pprox 1/n = 1/\sqrt{n^2}$ for γ_{11} , γ_{12} and γ_{22} .

Back to #7

S. Robin

Largest gap algorithm

• Degree of a node:
$$D_i = \sum_{j \neq i} Y_{ij}$$

Mean connection from group k:

$$\overline{\gamma}_k = \sum_{\ell} \pi_{\ell} \gamma_{k\ell}$$

Degree distribution²

 $(D_i \mid Z_i = k) \sim \mathcal{B}(n-1, \overline{\gamma}_k)$

→ Ensures consistency [CDR12] (including sparse regime)

Back to #8

²Balanced affiliation model = nasty case: $\pi_k \equiv 1/K$, $\gamma_{kk} = \gamma_{in}$, $\gamma_{k\ell} = \gamma_{out} \Rightarrow \overline{\gamma}_k \equiv (\gamma_{in} + (K - 1)\gamma_{out})/K$

4 - Beyond variational inference

Sequential importance sampling scheme

Consider $U = (\theta, Z)$

Distribution path: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_h(U) \propto p_{
m start}(U)^{1-
ho_h} \ imes \ p_{
m target}(U)^{
ho_h}$$

$$\propto p_{\text{start}}(U) \times r(U)^{\rho_h}, \qquad r(U) = \frac{p(U)p(Y \mid U)}{p_{\text{start}}(U)}$$

....

Sequential importance sampling scheme

Consider $U = (\theta, Z)$

Distribution path: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_h(U) \propto p_{\rm start}(U)^{1-
ho_h} \ imes \ p_{
m target}(U)^{
ho_h}$$

$$\propto p_{\text{start}}(U) \times r(U)^{\rho_h}, \qquad r(U) = rac{p(U)p(Y \mid U)}{p_{\text{start}}(U)}$$

Sequential sampling. At each step h, provides

$$\mathcal{E}_h = \{(U_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$$

Sequential importance sampling scheme

Consider $U = (\theta, Z)$

Distribution path: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_h(U) \propto p_{\text{start}}(U)^{1-\rho_h} \times p_{\text{target}}(U)^{\rho_h}$$

$$\propto p_{\mathrm{start}}(U) \ imes \ r(U)^{
ho_h}, \qquad \qquad r(U) = rac{p(U)p(Y \mid U)}{p_{\mathrm{start}}(U)}$$

Sequential sampling. At each step h, provides

$$\mathcal{E}_h = \{(U_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$$

Tune ρ_{h+1} to keep the efficient sample size sufficiently high at each step.

 \rightarrow Doable because r(U) does not depend on ρ .

 \blacktriangleright *p*_{start} = proposal, *p*_{target} = target

- *p*_{start} = proposal, *p*_{target} = target
- Intermediate distributions p_{start} = p₀, p₁, ..., p_H = p_{target}

- *p*_{start} = proposal, *p*_{target} = target
- Intermediate distributions p_{start} = p₀, p₁, ..., p_H = p_{target}
- Iteratively: use p_h to get a sample from p_{h+1}

*p*_{start} = proposal, *p*_{target} = target

- Intermediate distributions p_{start} = p₀, p₁, ..., p_H = p_{target}
- Iteratively: use p_h to get a sample from p_{h+1}

step 2: ESS = 0.052

*p*_{start} = proposal, *p*_{target} = target

- Intermediate distributions p_{start} = p₀, p₁, ..., p_H = p_{target}
- Iteratively: use p_h to get a sample from p_{h+1}

step 3: ESS = 0.078

*p*_{start} = proposal, *p*_{target} = target

- Intermediate distributions p_{start} = p₀, p₁, ..., p_H = p_{target}
- Iteratively: use p_h to get a sample from p_{h+1}

step 4: ESS = 0.16

Iteratively: use p_h to get a sample from p_{h+1}

step 4: ESS = 0.16

+ resampling/propagation to avoid complete degeneracy [DR19]

Residual 'graphon' Graphon representation of (π, α) . [LR16,DR19]

 $\phi_{\mathcal{K}}: (0,1) \times (0,1) \mapsto \mathbb{R}$ block wise constant

For a given set S, averaging over K gives

$$\widehat{\phi}(u,v) = \mathbb{E}\left(\phi_{\mathcal{K}}(u,v) \mid Y, S\right) = \sum_{\mathcal{K}} p(\mathcal{K} \mid Y, S) \mathbb{E}\left(\phi_{\mathcal{K}}(u,v) \mid Y, S, \mathcal{K}\right)$$

Residual 'graphon' Graphon representation of (π, α) . [LR16,DR19]

 $\phi_{\mathcal{K}}: (0,1) \times (0,1) \mapsto \mathbb{R}$ block wise constant

For a given set S, averaging over K gives

$$\widehat{\phi}(u,v) = \mathbb{E}\left(\phi_{\mathcal{K}}(u,v) \mid Y, S\right) = \sum_{\mathcal{K}} p(\mathcal{K} \mid Y, S) \mathbb{E}\left(\phi_{\mathcal{K}}(u,v) \mid Y, S, \mathcal{K}\right)$$

Back to #15

S. Robin

$\mathsf{SMC} \ \mathsf{path}$

from [DR19]

Back to #16