3 - Variational inference for species abundances and network models

S. Robin
INRAE / AgroParisTech / univ. Paris-Saclay

Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

Outline

1 - Models with latent variables in ecology

2 - Variational inference for incomplete data models
(statistics)

3 - Variational inference for species abundances and network models (statistical ecology)

4- Beyond variational inference

Part 3

Poisson log-normal model
Illustration

Extensions of the Poisson log-normal model
Dimension reduction
Network inference

Block-models
Illustration

Extensions of block-models
Covariates
Dynamic SBM
Metagenomics

To summarize

Outline

Poisson log-normal model
 Illustration

```
Extensions of the Poisson log-normal model
    Dimension reduction
    Network inference
Block-models
    Illustration
Extensions of block-models
    Covariates
    Dynamic SBM
    Metagenomics
```

To summarize

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- $Y_{i j}=$ abundance of species j in site i
- $x_{i}=$ vector of descriptors for site i

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- $Y_{i j}=$ abundance of species j in site i
- $x_{i}=$ vector of descriptors for site i

Abundance table Y			
Hi.pl	An.lu	Me.ae	\ldots
31	0	108	
4	0	110	
27	0	788	

Environmental			
Lat.	Long.	Depth	Temp.
71.10	22.43	349	3.95
71.32	23.68	382	3.75
71.60	24.90	294	3.45

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- $Y_{i j}=$ abundance of species j in site i
- $x_{i}=$ vector of descriptors for site i

Poisson log-normal model.
Abundance table Y

Hi.pl	An.lu	Me.ae	\ldots
31	0	108	
4	0	110	
27	0	788	

- Latent vectors

$$
Z_{i} \sim \mathcal{N}(0, \Sigma)
$$

- Observed species counts

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

- Parameters

Environmental covariates X			
Lat.	Long.	Depth	Temp.
71.10	22.43	349	3.95
71.32	23.68	382	3.75
71.60	24.90	294	3.45

$$
\theta=(\beta, \Sigma)
$$

Variational inference

Conditional distribution.

- Because of the independance between sites

$$
p_{\theta}(Z \mid Y)=\prod_{i} p_{\theta}\left(Z_{i} \mid Y_{i}\right)
$$

- But $p_{\theta}\left(Z_{i} \mid Y_{i}\right)$ has no close form

Variational inference

Conditional distribution.

- Because of the independance between sites

$$
p_{\theta}(Z \mid Y)=\prod_{i} p_{\theta}\left(Z_{i} \mid Y_{i}\right)
$$

- But $p_{\theta}\left(Z_{i} \mid Y_{i}\right)$ has no close form

Variational approximation. Use a Gaussian approximate distribution

$$
\mathcal{Q}=\{q: \quad q(Z)=\underbrace{\prod_{i} q_{i}\left(Z_{i}\right)}_{\text {no approx. }}, \quad q_{i}\left(Z_{i}\right)=\mathcal{N}\left(Z_{i} ; m_{i}, S_{i}\right)\}
$$

- Variational parameters:

$$
m_{i} \simeq \mathbb{E}\left(Z_{i} \mid Y_{i}\right), \quad S_{i} \simeq \mathbb{V}\left(Z_{i} \mid Y_{i}\right)
$$

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

- VE step: update the variational parameters m_{i}, S_{i}

$$
\left(m_{i}^{h+1}, S_{i}^{h+1}\right)=\underset{m, S}{\arg \min } K L\left[\mathcal{N}\left(Z_{i} ; m, S\right) \| p_{\theta^{h}}\left(Z_{i} \mid Y_{i}\right)\right]
$$

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

- VE step: update the variational parameters m_{i}, S_{i}

$$
\left(m_{i}^{h+1}, S_{i}^{h+1}\right)=\underset{m, S}{\arg \min } K L\left[\mathcal{N}\left(Z_{i} ; m, S\right) \| p_{\theta^{h}}\left(Z_{i} \mid Y_{i}\right)\right]
$$

\rightarrow Convex problem: doable via gradient descent

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

- VE step: update the variational parameters m_{i}, S_{i}

$$
\left(m_{i}^{h+1}, S_{i}^{h+1}\right)=\underset{m, S}{\arg \min } K L\left[\mathcal{N}\left(Z_{i} ; m, S\right) \| p_{\theta^{h}}\left(Z_{i} \mid Y_{i}\right)\right]
$$

\rightarrow Convex problem: doable via gradient descent

- M step: update the model parameters $\boldsymbol{\Sigma}, \beta$

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

- VE step: update the variational parameters m_{i}, S_{i}

$$
\left(m_{i}^{h+1}, S_{i}^{h+1}\right)=\underset{m, S}{\arg \min } K L\left[\mathcal{N}\left(Z_{i} ; m, S\right) \| p_{\theta^{h}}\left(Z_{i} \mid Y_{i}\right)\right]
$$

\rightarrow Convex problem: doable via gradient descent

- M step: update the model parameters $\boldsymbol{\Sigma}, \beta$

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

$\rightarrow \Sigma^{h+1}$: explicit formula
$\rightarrow \beta^{h+1}$: similar to Poisson regression (generalized linear model)

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

$x_{i}=$ all covariates

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

$x_{i}=$ all covariates
inferred correlations $\widehat{\Sigma}_{\text {full }}$

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

$x_{i}=$ all covariates
inferred correlations $\widehat{\Sigma}_{\text {full }}$

correlations between predictions: $x_{i}^{\top} \widehat{\beta}_{j}$

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

$x_{i}=$ all covariates

inferred correlations $\widehat{\Sigma}_{\text {full }}$

Null model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\mu_{j}+Z_{i j}\right)\right)
$$

no covariate

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(x_{i}^{\top} \beta_{j}+Z_{i j}\right)\right)
$$

$x_{i}=$ all covariates
inferred correlations $\widehat{\Sigma}_{\text {full }}$

correlations between predictions: $x_{i}^{\top} \widehat{\beta}_{j}$

Null model

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\mu_{j}+Z_{i j}\right)\right)
$$

no covariate

Outline

Poisson log-normal model Illustration

Extensions of the Poisson log-normal model
Dimension reduction
Network inference

Block-models
Illustration

Extensions of block-models
Covariates
Dynamic SBM
Metagenomics

To summarize

Dimension reduction

Typical context.

- Microbial ecology: $p=10^{2}, 10^{3}, 10^{4}$ species
- 'Abundance' = 'read' count $=$ number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Dimension reduction

Typical context.

- Microbial ecology: $p=10^{2}, 10^{3}, 10^{4}$ species
- 'Abundance' = 'read' count $=$ number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Aim.

- Dimension reduction (visualization)
- Accounting for major known effects

Dimension reduction

Typical context.

- Microbial ecology: $p=10^{2}, 10^{3}, 10^{4}$ species
- 'Abundance' = 'read' count $=$ number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Aim.

- Dimension reduction (visualization)
- Accounting for major known effects

Probabilistic principal component analysis. Gaussian setting [TB99]:

$$
\Sigma=\underbrace{B B^{\top}}_{\text {low rank }}+\sigma^{2} I_{p}, \quad \text { where } B(p \times r)
$$

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]

(PLN-) probabilistic PCA

PLN-PCA model. [CMR18]

- Low dimension latent vector

$$
W_{i} \sim \mathcal{N}_{r}(0, I), \quad \text { where } r \ll p
$$

(PLN-) probabilistic PCA

PLN-PCA model. [CMR18]

- Low dimension latent vector

$$
W_{i} \sim \mathcal{N}_{r}(0, I), \quad \text { where } r \ll p
$$

- p-dimensional latent vector

$$
Z_{i}=B W_{i} \quad \text { where } B(p \times r)=\text { loading matrix }
$$

(PLN-) probabilistic PCA

PLN-PCA model. [CMR18]

- Low dimension latent vector

$$
W_{i} \sim \mathcal{N}_{r}(0, I), \quad \text { where } r \ll p
$$

- p-dimensional latent vector

$$
Z_{i}=B W_{i} \quad \text { where } B(p \times r)=\text { loading matrix }
$$

- Observed counts

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(o_{i j}+x_{i}^{\top} \beta+Z_{i j}\right)\right)
$$

$o_{i j}=$ known 'offset' coefficient, accounting for the sampling effort

(PLN-) probabilistic PCA

PLN-PCA model. [CMR18]

- Low dimension latent vector

$$
W_{i} \sim \mathcal{N}_{r}(0, I), \quad \text { where } r \ll p
$$

- p-dimensional latent vector

$$
Z_{i}=B W_{i} \quad \text { where } B(p \times r)=\text { loading matrix }
$$

- Observed counts

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(o_{i j}+x_{i}^{\top} \beta+Z_{i j}\right)\right)
$$

$o_{i j}=$ known 'offset' coefficient, accounting for the sampling effort

- Parameters

$$
\theta=(\text { loading matrix } B, \text { regression coefficient } \beta) \quad(+ \text { rank } r)
$$

Variational inference for PLN-PCA

VEM algorithm.

Variational inference for PLN-PCA

VEM algorithm.

- VE step: update the variational parameters $m_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ and $S_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$
\rightarrow Similar to the VE step of regular PLN

Variational inference for PLN-PCA

VEM algorithm.

- VE step: update the variational parameters $m_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ and $S_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ \rightarrow Similar to the VE step of regular PLN
- M step: update the model parameters B^{h+1} and β^{h+1}
\rightarrow no close form, but still convex problem (gradient descent)

Model selection.

Variational inference for PLN-PCA

VEM algorithm.

- VE step: update the variational parameters $m_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ and $S_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ \rightarrow Similar to the VE step of regular PLN
- M step: update the model parameters B^{h+1} and β^{h+1}
\rightarrow no close form, but still convex problem (gradient descent)

Model selection.

- BIC penalty [Sch78] (Laplace approximation): $\operatorname{pen}_{B I C}(\theta)=(\underbrace{p d}_{\beta}+\underbrace{p r}_{B}) \log n / 2$

Variational inference for PLN-PCA

VEM algorithm.

- VE step: update the variational parameters $m_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ and $S_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ \rightarrow Similar to the VE step of regular PLN
- M step: update the model parameters B^{h+1} and β^{h+1}
\rightarrow no close form, but still convex problem (gradient descent)

Model selection.

- BIC penalty [Sch78] (Laplace approximation): $\operatorname{pen}_{B I C}(\theta)=(\underbrace{p d}_{\beta}+\underbrace{p r}_{B}) \log n / 2$
- Heuristic adaptation (replace $\log p_{\theta}(Y)$ with $J_{\theta, q}(Y)$)

$$
v B I C=J_{\theta, q}(Y)-\operatorname{pen}_{B I C}(\theta)
$$

Variational inference for PLN-PCA

VEM algorithm.

- VE step: update the variational parameters $m_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ and $S_{i}^{h+1}=\mathbb{E}_{q_{i}^{h+1}}\left(W_{i}\right)$ \rightarrow Similar to the VE step of regular PLN
- M step: update the model parameters B^{h+1} and β^{h+1} \rightarrow no close form, but still convex problem (gradient descent)

Model selection.

- BIC penalty [Sch78] (Laplace approximation): $\operatorname{pen}_{B I C}(\theta)=(\underbrace{p d}_{\beta}+\underbrace{p r}_{B}) \log n / 2$
- Heuristic adaptation (replace $\log p_{\theta}(Y)$ with $J_{\theta, q}(Y)$)

$$
v B I C=J_{\theta, q}(Y)-\operatorname{pen}_{B I C}(\theta)
$$

- Inspired from [BCG00] (additional penalty for the conditional entropy the W_{i} 's)

$$
v I C L=J_{\theta, q}(Y)-\operatorname{pen}_{B I C}(\theta)-\mathcal{H}(q)=\mathbb{E}_{q} \log p_{\theta}(Y, Z)-\operatorname{pen}_{B I C}(\theta)
$$

Oak powdery mildew

Metabarcoding data [JFS ${ }^{+} 16$]

- $p=114$ OTUs
(66 bacteria and 48
fungi)
- $n=116$ leaves
- collected on 3 trees
- resistant
- intermediate
- susceptible
to oak powdery mildew;
- different protocole for bacteria and fungi
$o_{i j}=$ sequencing depth

Oak powdery mildew

Metabarcoding data [JFS ${ }^{+} 16$]

- $p=114$ OTUs (66 bacteria and 48 fungi)
- $n=116$ leaves

- collected on 3 trees
- resistant
- intermediate
- susceptible
to oak powdery mildew;
- different protocole for bacteria and fungi $o_{i j}=$ sequencing depth

Oak powdery mildew

Metabarcoding data [JFS ${ }^{+} 16$]

- $p=114$ OTUs (66 bacteria and 48 fungi)
- $n=116$ leaves
- collected on 3 trees
- resistant
- intermediate
- susceptible
to oak powdery mildew;
- different protocole for bacteria and fungi $o_{i j}=$ sequencing depth

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)
\rightarrow Obviously, analyses based on co-occurences or correlations are not sufficient [PWT+ ${ }^{+}$]

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)
\rightarrow Obviously, analyses based on co-occurences or correlations are not sufficient [PWT+ ${ }^{+}$]

Probabilistic translation.

$$
\begin{aligned}
\text { association } & =\text { marginal dependance } \\
\text { direct interaction } & =\text { conditional dependance }
\end{aligned}
$$

Undirected graphical models

Definition. $p\left(U_{1}, \ldots U_{k}\right)$ is faithful to the (chordal) graph $G=([k], E)$ iff

$$
p\left(U_{1}, \ldots U_{k}\right) \propto \prod_{C \in \mathcal{C}} \psi_{\mathcal{C}}\left(U_{C}\right)
$$

where $\mathcal{C}=\{$ cliques of $G\}$ and $U_{C}=\left(Y_{j}\right)_{j \in C}$.

Undirected graphical models

Definition. $p\left(U_{1}, \ldots U_{k}\right)$ is faithful to the (chordal) graph $G=([k], E)$ iff

$$
p\left(U_{1}, \ldots U_{k}\right) \propto \prod_{C \in \mathcal{C}} \psi_{\mathcal{C}}\left(U_{C}\right)
$$

where $\mathcal{C}=\{$ cliques of $G\}$ and $U_{C}=\left(Y_{j}\right)_{j \in C}$.

Property.
separation $\quad \Leftrightarrow \quad$ conditional independance

Undirected graphical models

Definition. $p\left(U_{1}, \ldots U_{k}\right)$ is faithful to the (chordal) graph $G=([k], E)$ iff

$$
p\left(U_{1}, \ldots U_{k}\right) \propto \prod_{C \in \mathcal{C}} \psi_{\mathcal{C}}\left(U_{C}\right)
$$

where $\mathcal{C}=\{$ cliques of $G\}$ and $U_{C}=\left(Y_{j}\right)_{j \in C}$.

Property.

$$
\text { separation } \quad \Leftrightarrow \quad \text { conditional independance }
$$

Example.

$$
C_{1}=\{1,2,3\}, C_{2}=\{3,4\}
$$

Undirected graphical models

Definition. $p\left(U_{1}, \ldots U_{k}\right)$ is faithful to the (chordal) graph $G=([k], E)$ iff

$$
p\left(U_{1}, \ldots U_{k}\right) \propto \prod_{C \in \mathcal{C}} \psi_{\mathcal{C}}\left(U_{C}\right)
$$

where $\mathcal{C}=\{$ cliques of $G\}$ and $U_{C}=\left(Y_{j}\right)_{j \in C}$.

Property.

$$
\text { separation } \quad \Leftrightarrow \quad \text { conditional independance }
$$

Example.

$$
p\left(U_{1}, U_{2}, U_{3}, U_{4}\right) \propto \psi_{1}\left(U_{1}, U_{2}, U_{3}\right) \psi_{2}\left(U_{3}, U_{4}\right)
$$

- $\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ all dependent
- $U_{1} \not \Perp U_{2} \mid\left(U_{3}, U_{4}\right)$
- $U_{4} \nVdash U_{1} \mid U_{2}$
- $U_{4} \Perp\left(U_{1}, U_{2}\right) \mid U_{3}$

Gaussian graphical models

Gaussian graphical models

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega=\left[\omega_{j k}\right]=\Sigma^{-1}$ the precision matrix:

$$
\begin{aligned}
& \sigma_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \\
& \omega_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \mid\left(Z_{h}\right)_{h \neq j, k} \quad \text { ('parrial correlation') }
\end{aligned}
$$

Gaussian graphical models

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega=\left[\omega_{j k}\right]=\Sigma^{-1}$ the precision matrix:

$$
\begin{aligned}
& \sigma_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \\
& \omega_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \mid\left(Z_{h}\right)_{h \neq j, k} \quad \text { ('porrelation') }
\end{aligned}
$$

$\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Gaussian graphical models

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega=\left[\omega_{j k}\right]=\Sigma^{-1}$ the precision matrix:

$$
\begin{aligned}
& \sigma_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \\
& \omega_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \mid\left(Z_{h}\right)_{h \neq j, k} \quad \text { ('parrelation') } \text { correlation') }
\end{aligned}
$$

$\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Graphical lasso. [FHT08]

- Common assumption: few species are in direct interaction

$$
\Rightarrow \quad \Omega \text { should be sparse } \quad \text { (many } 0 \text { 's) }
$$

Gaussian graphical models

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega=\left[\omega_{j k}\right]=\Sigma^{-1}$ the precision matrix:

$$
\begin{aligned}
& \sigma_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \\
& \omega_{j k}=0 \Leftrightarrow\left(Z_{j}, Z_{k}\right) \text { independent } \mid\left(Z_{h}\right)_{h \neq j, k} \quad \text { ('parrelation') }
\end{aligned}
$$

$\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Graphical lasso. [FHT08]

- Common assumption: few species are in direct interaction

$$
\Rightarrow \quad \Omega \text { should be sparse } \quad \text { (many } 0 \text { 's) }
$$

- Sparsity-inducing penalty (graphical lasso)

$$
\max _{\Omega} \log p(Z ; \Omega)-\lambda \underbrace{\sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$
\arg \max _{\beta, \Omega, q \in \mathcal{Q}} J(\beta, \Omega, q)-\underbrace{\lambda \sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

\rightarrow Convex problem for both the VE and the M step

Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$
\arg \max _{\beta, \Omega, q \in \mathcal{Q}} J(\beta, \Omega, q)-\underbrace{\lambda \sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

\rightarrow Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$
\arg \max _{\beta, \Omega, q \in \mathcal{Q}} J(\beta, \Omega, q)-\underbrace{\lambda \sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

\rightarrow Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$
\arg \max _{\beta, \Omega, q \in \mathcal{Q}} J(\beta, \Omega, q)-\underbrace{\lambda \sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

\rightarrow Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

Poisson log-normal model for network inference
PLN-network. PLN model with graphical lasso penalty [CMR19]

$$
\arg \max _{\beta, \Omega, q \in \mathcal{Q}} J(\beta, \Omega, q)-\underbrace{\lambda \sum_{j \neq k}\left|\omega_{j k}\right|}_{\ell_{1} \text { penalty }}
$$

\rightarrow Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

\rightarrow Similar setting for most approaches in statistical ecology [WBO ${ }^{+} 15, \mathrm{KMM}^{+} 15$, FHZD17,PHW18]

Barents' fish species

\qquad
61 edges
(b) temperature \& depth

11 edges

- $n=89$ sites
- $p=30$ species
- $d=4$ covariates
- latitude
longitude
longitude
\rightarrow depth

Data:

61 edges

93 edges

(c) all covariates

29 edges

- Re.hi

62 edges

Barents' fish species: choosing λ

criterion
\rightarrow BIC
\rightarrow EBIC
\because loglik
\rightarrow pen_loglik

Alternatively.
Use resampling and select edges based on selection frequency
[LRW10]

Outline

```
Poisson log-normal model
    Illustration
Extensions of the Poisson log-normal model
    Dimension reduction
    Network inference
```


Block-models

Illustration

Extensions of block-models

Covariates
Dynamic SBM
Metagenomics

To summarize

Stochastic block-model for ecological networks

Data:

- n species
- $Y_{i j}=$ 'intensity' (e.g. count) of the link between species i and j

Adjacency matrix.

Stochastic block-model for ecological networks

Data:

- n species
- $Y_{i j}=$ 'intensity' (e.g. count) of the link between species i and j

Adjacency matrix.

Stochastic block-model.

- K groups
- Latent group membership

$$
Z_{i} \sim \mathcal{M}\left(1,\left(\pi_{1}, \ldots \pi_{K}\right)\right)
$$

- Observed count

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\alpha_{Z_{i}, z_{j}}\right)\right)
$$

- Parameters

$$
\theta=(\pi, \alpha)
$$

$$
+K
$$

Variational inference

Conditional distribution.

- Group memberships:

$$
Z_{i} \Perp Z_{j} \quad \text { but } \quad Z_{i} \not \Perp Z_{j} \mid Y_{i j}
$$

- $p_{\theta}(Z \mid Y)$ is intractable

Variational inference

Conditional distribution.

Variational approximation. Use a factorable approximate distribution

$$
\mathcal{Q}=\{q: \quad q(Z)=\prod_{i} q_{i}\left(Z_{i}\right), \quad \underbrace{q_{i}\left(Z_{i}\right)=\mathcal{M}\left(Z_{i} ; 1, \tau_{i}\right)}_{\text {no approximation }}\}
$$

Variational parameters: $\quad \tau_{i k} \simeq \operatorname{Pr}\left(Z_{i}=k \mid Y\right)$

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

- VE step: update the variational parameters τ_{i}

$$
\tau_{i k}^{h+1} \propto \pi_{k}^{h} \prod_{j \neq i} \prod_{\ell} p_{\theta^{h}}\left(Y_{i j} \mid Z_{i}=k, Z_{j}=\ell\right)^{\tau_{j \ell}^{h+1}}
$$

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

- VE step: update the variational parameters τ_{i}

$$
\tau_{i k}^{h+1} \propto \pi_{k}^{h} \prod_{j \neq i} \prod_{\ell} p_{\theta^{h}}\left(Y_{i j} \mid Z_{i}=k, Z_{j}=\ell\right)^{\tau_{j \ell}^{h+1}}
$$

\rightarrow Fix-point algorithm

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

- VE step: update the variational parameters τ_{i}

$$
\tau_{i k}^{h+1} \propto \pi_{k}^{h} \prod_{j \neq i} \prod_{\ell} p_{\theta^{h}}\left(Y_{i j} \mid Z_{i}=k, Z_{j}=\ell\right)^{\tau_{j \ell}^{h+1}}
$$

\rightarrow Fix-point algorithm

- M step: update the model parameters π, α

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

- VE step: update the variational parameters τ_{i}

$$
\tau_{i k}^{h+1} \propto \pi_{k}^{h} \prod_{j \neq i} \prod_{\ell} p_{\theta^{h}}\left(Y_{i j} \mid Z_{i}=k, Z_{j}=\ell\right)^{\tau_{j \ell}^{h+1}}
$$

\rightarrow Fix-point algorithm

- M step: update the model parameters π, α

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

\rightarrow Close form for both π^{h+1} and α^{h+1}

Variational EM

Variational EM algorithm. blockmodels R package [Lég16]

- VE step: update the variational parameters τ_{i}

$$
\tau_{i k}^{h+1} \propto \pi_{k}^{h} \prod_{j \neq i} \prod_{\ell} p_{\theta^{h}}\left(Y_{i j} \mid Z_{i}=k, Z_{j}=\ell\right)^{\tau_{j \ell}^{h+1}}
$$

\rightarrow Fix-point algorithm

- M step: update the model parameters π, α

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

\rightarrow Close form for both π^{h+1} and α^{h+1}

Model selection. To choose the number of groups K : vBIC or vICL with penalty

$$
\operatorname{pen}_{B I C}(\theta)=\underbrace{(K-1) \frac{\log n}{2}}_{\text {node memberships }}+\underbrace{\frac{K(K+1)}{2} \frac{\log (n(n-1))}{2}}_{\text {node links }}
$$

A first illustration: Tree species network

Simple model: No covariate

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\alpha_{Z_{i} z_{j}}\right)\right)
$$

$Y_{i j}=$ number of shared fungal parasites
$\widehat{K}_{I C L}=7$
adjacency matrix Y

clustered matrix

A first illustration: Tree species network

Simple model: No covariate

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\alpha_{Z_{i} z_{j}}\right)\right)
$$

$Y_{i j}=$ number of shared fungal parasites
$\widehat{K}_{I C L}=7$
adjacency matrix Y

clustered matrix

'Validation'

comparison with the phylogenetic classification
(conipherophyta vs magnoliophyta)

Outline

```
Poisson log-normal model
    Illustration
Extensions of the Poisson log-normal model
    Dimension reduction
    Network inference
Block-models
    Illustration
```

Extensions of block-models
Covariates
Dynamic SBM
Metagenomics

Accounting for covariates

Adding a regression term.

- Information about similarity or dissimilarity between species is often available \rightarrow taxonomic, phylogenetic or geographic distance
- Obvious generalization of the stochastic block-model [MRV10]:

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\alpha_{z_{i}} z_{j}+x_{i j}^{\top} \beta\right)\right)
$$

$\rightarrow x_{i j}=$ vector of covariates for the pair (i, j)

- Parameters: $\theta=(\pi, \alpha, \beta)$

Accounting for covariates

Adding a regression term.

- Information about similarity or dissimilarity between species is often available \rightarrow taxonomic, phylogenetic or geographic distance
- Obvious generalization of the stochastic block-model [MRV10]:

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(\alpha_{z_{i} z_{j}}+x_{i j}^{\top} \beta\right)\right)
$$

$\rightarrow x_{i j}=$ vector of covariates for the pair (i, j)

- Parameters: $\theta=(\pi, \alpha, \beta)$

Variational EM algorithm. [MRV10]

- Very similar to SBM without covariates
- Estimation of β via weighted generalized linear model

Tree species network

Covariate:

$$
x_{i j}=\text { taxonomic distance }
$$

Estimates:

$$
\begin{gathered}
\widehat{K}_{I C L}=4 \\
\widehat{\beta}=-.317
\end{gathered}
$$

No covariate: $\widehat{K}_{I C L}=7$
Taxonomic dist.: $\widehat{K}_{I C L}=4$

Tree species network

Covariate:

$$
x_{i j}=\text { taxonomic distance }
$$

Estimates:

$$
\begin{gathered}
\widehat{K}_{I C L}=4 \\
\widehat{\beta}=-.317
\end{gathered}
$$

No covariate: $\widehat{K}_{/ C L}=7$

Taxonomic dist.: $\widehat{K}_{I C L}=4$

- Taxonomy (partially) explains the links (smaller \widehat{K})
- Distant species share less parasites $(\widehat{\beta}<0)$
- The remaining structure is not related to taxonomy

Animal behavior

Data: [RSF $\left.{ }^{+} 15\right]$

- Consider n individuals (animals) along T times (days, weeks)
- At each time, observe

$$
Y_{i j}^{t}=\text { intensity of the social interaction between individuals } i \text { and } j \text { at time } t
$$

Animal behavior

Data: [RSF $\left.{ }^{+} 15\right]$

- Consider n individuals (animals) along T times (days, weeks)
- At each time, observe

$$
Y_{i j}^{t}=\text { intensity of the social interaction between individuals } i \text { and } j \text { at time } t
$$

Questions:

- Do the individuals play different roles in the social network
- Do these roles change over time

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Z_{1}^{1}
Z_{i}^{1}
Z_{n}^{1}

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Dynamic SBM

Dynamic stochastic block-model. [MM17]

- Assume that individuals belong to K clusters ('roles')
- Denote by Z_{i}^{t} the (latent) role of individual i at time t
- The successive roles of each individuals are independent Markov chains

$$
Z_{i}=\left\{Z_{i}^{t}\right\}_{1 \leq t \leq T} \sim M C\left(\nu_{1}, \pi\right)
$$

- Social interactions are conditionally independent

$$
\left\{Y_{i j}^{t}\right\}_{i, j, t} \text { independent }\left|\left\{Z_{i}^{t}\right\}_{i, t}, \quad Y_{i j}^{t}\right| Z_{i}^{t}, Z_{j}^{t} \sim F\left(\cdot ; \gamma_{Z_{i}^{t}, Z_{j}^{t}}\right)
$$

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain \ldots with K^{n} states

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain ... with K^{n} states

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain \ldots with K^{n} states

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain \ldots with K^{n} states

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain ... with K^{n} states

Approximation classe. $p_{\theta}(Z \mid Y) \simeq q(Z)=$ product of independent Markov chains (partial factorization)

$$
\mathcal{Q}=\left\{q: \quad q(Z)=\prod_{i} q_{i}\left(Z_{i}\right), \quad q_{i}\left(Z_{i}\right)=q_{i}\left(Z_{i}^{1}\right) \prod_{t>1} q_{i}\left(Z_{i}^{t} \mid Z_{i}^{t-1}\right)\right\}
$$

Variational EM

Intractable EM. Denoting $Z^{t}=\left(Z_{1}^{t}, \ldots Z_{n}^{t}\right),\left(Z^{t} \mid Y\right)_{t \geq 1}$ is a Markov chain \ldots with K^{n} states

Approximation classe. $p_{\theta}(Z \mid Y) \simeq q(Z)=$ product of independent Markov chains (partial factorization)

$$
\mathcal{Q}=\left\{q: \quad q(Z)=\prod_{i} q_{i}\left(Z_{i}\right), \quad q_{i}\left(Z_{i}\right)=q_{i}\left(Z_{i}^{1}\right) \prod_{t>1} q_{i}\left(Z_{i}^{t} \mid Z_{i}^{t-1}\right)\right\}
$$

VEM algorithm.

- VE step $=$ running n forward-backward recursions

Onager social network

Data from [RSF $\left.{ }^{+} 15\right] . n=23$ onagers, observations gathered into $T=4$ time periods in [MM17].

- 4 groups (='roles') are found, from isolated to highly central
- A fraction of individuals do change role from one period to another

Latent block-model for comparative genomics

Comparative metagnomics.

- n samples (soil surrounding the root of a plant - rhizoshpere - with given genotype), p bacterial species (Operational Taxonomy Units $=$ OTUs),
- $Y_{i j}=$ number of reads from species j in sample i

[^0]S. Robin

3 - Variational inference for species abundances and network models

Latent block-model for comparative genomics

Comparative metagnomics.

- n samples (soil surrounding the root of a plant - rhizoshpere - with given genotype), p bacterial species (Operational Taxonomy Units $=$ OTUs),
- $Y_{i j}=$ number of reads from species j in sample i
- Question: Do preferential (or negative) associations exist between groups of genotypes and groups of bacteria?
- Over-dispersion: Due to technological variability, counts are over-dispersed wrt Poisson \rightarrow Negative-binomial ($=$ Poisson-Gamma ${ }^{1}$) distribution for the count

[^1]
Latent block-model for comparative genomics

Model.

[^2]
Latent block-model for comparative genomics

Model.

- $\left\{Z_{i}\right\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$
Z_{i} \sim \mathcal{M}(1, \pi)
$$

[^3]
Latent block-model for comparative genomics

Model.

- $\left\{Z_{i}\right\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$
Z_{i} \sim \mathcal{M}(1, \pi)
$$

- $\left\{W_{j}\right\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho=$ proportions of species groups

$$
W_{i} \sim \mathcal{M}(1, \rho)
$$

[^4]
Latent block-model for comparative genomics

Model.

- $\left\{Z_{i}\right\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$
Z_{i} \sim \mathcal{M}(1, \pi)
$$

- $\left\{W_{j}\right\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho=$ proportions of species groups

$$
W_{i} \sim \mathcal{M}(1, \rho)
$$

- $\left\{U_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ random effects $a=$ overdispersion parameter ${ }^{2}$

$$
U_{i j} \sim \mathcal{G a m m a}(a, a)
$$

[^5]
Latent block-model for comparative genomics

Model.

- $\left\{Z_{i}\right\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$
Z_{i} \sim \mathcal{M}(1, \pi)
$$

- $\left\{W_{j}\right\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho=$ proportions of species groups

$$
W_{i} \sim \mathcal{M}(1, \rho)
$$

- $\left\{U_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ random effects $a=$ overdispersion parameter ${ }^{2}$

$$
U_{i j} \sim \mathcal{G a m m a}(a, a)
$$

- $\left\{Y_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ observed counts $\mu_{j}=$ mean (log-)abundance of species j

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(o_{i}+\mu_{j}+\alpha_{Z_{i} W_{j}}+\log U_{i j}\right)\right)
$$

$o_{i j}=$ known sampling effort for species j in sample i

[^6]
Latent block-model for comparative genomics

Model.

- $\left\{Z_{i}\right\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$
Z_{i} \sim \mathcal{M}(1, \pi)
$$

- $\left\{W_{j}\right\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho=$ proportions of species groups

$$
W_{i} \sim \mathcal{M}(1, \rho)
$$

- $\left\{U_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ random effects $a=$ overdispersion parameter ${ }^{2}$

$$
U_{i j} \sim \mathcal{G} \operatorname{amma}(a, a)
$$

- $\left\{Y_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ observed counts $\mu_{j}=$ mean (log-)abundance of species j

$$
Y_{i j} \sim \mathcal{P}\left(\exp \left(o_{i}+\mu_{j}+\alpha_{Z_{i} W_{j}}+\log U_{i j}\right)\right)
$$

$o_{i j}=$ known sampling effort for species j in sample i

Parameters.

$$
\theta=(\pi, \rho, a, \alpha, \mu) \quad+(K, L)
$$

[^7]
Rhizoshpere clustering

Variational EM. Using

$$
q(Z, W, U)=q_{Z}(Z) q_{W}(W) q_{U}(U)
$$

Model selection with vICL including $\mathcal{H}\left(q_{z}\right)$ and $\mathcal{H}\left(q_{W}\right)$

[^8]
Rhizoshpere clustering

Variational EM. Using

$$
q(Z, W, U)=q_{Z}(Z) q_{W}(W) q_{U}(U)
$$

Model selection with vICL including $\mathcal{H}\left(q_{z}\right)$ and $\mathcal{H}\left(q_{W}\right)$

Results.

- $\widehat{K}=4$ sample groups, $\widehat{L}=10$ bacteria groups
- Contrasted interactions: $\alpha_{k g} \in[-.5,1.2]$
- Sample groups display different biodiversity (Shannon index)

[^9]
Outline

```
Poisson log-normal model
    Illustration
Extensions of the Poisson log-normal model
    Dimension reduction
    Network inference
Block-models
    Illustration
Extensions of block-models
    Covariates
    Dynamic SBM
    Metagenomics
```

To summarize

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- Variational approximation: efficient approach for their inference \rightarrow Mostly rely on the choice of the approximation class

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- Variational approximation: efficient approach for their inference \rightarrow Mostly rely on the choice of the approximation class

Many other problems/models.

- Account for a spatial structure, fundamental niche vs realized niche, looking for some structured in an inferred network, ...

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- Variational approximation: efficient approach for their inference \rightarrow Mostly rely on the choice of the approximation class

Many other problems/models.

- Account for a spatial structure, fundamental niche vs realized niche, looking for some structured in an inferred network, ...

Statistical guarantees.

- General properties of variational estimates?
- Combining VEM with other inference methods

References I

Ciernacki，G．Celeux，and G．Govaert．Assessing a mixture model for clustering with the integrated completed likelihood．IEEE Trans．Pattern Anal． Machine Intel．，22（7）：719－25， 2000.
，M．Mariadassou，and S．Robin．Variational inference for probabilistic Poisson PCA．The Annals of Applied Statistics，12（4）：2674－2698， 2018.
iquet，M．Mariadassou，and S．Robin．Variational inference for sparse network reconstruction from count data．In International Conference on Machine Learning，pages 1162－1171， 2019.
edman，T．Hastie，and R．Tibshirani．Sparse inverse covariance estimation with the graphical lasso．Biostatistics，9（3）：432－441， 2008.

C．Huang，H．Zhao，and M．Deng．gCoda：conditional dependence network inference for compositional data．Journal of Computational Biology， 24（7）：699－708， 2017.

B Jakuschkin，V．Fievet，L．Schwaller，T．Fort，C．Robin，and C．Vacher．Deciphering the pathobiome：Intra－and interkingdom interactions involving the pathogen Erysiphe alphitoides．Microbial ecology，pages 1－11， 2016.

Kurtz，C．L．Müller，E．R．Miraldi，D．R．Littman，M．J．Blaser，and R．A．Bonneau．Sparse and compositionally robust inference of microbial ecological networks．PLoS computational biology，11（5）：e1004226， 2015. Léger．Blockmodels：A R－package for estimating in latent block model and stochastic block model，with various probability functions，with or without covariates．Technical report，arXiv：1602．07587， 2016.
，K．Roeder，and L．Wasserman．Stability approach to regularization selection（StARS）for high dimensional graphical models．In Advances in neural information processing systems，pages 1432－1440， 2010.

ias and V．Miele．Statistical clustering of temporal networks through a dynamic stochastic block model．Journal of the Royal Statistical Society： Series B（Statistical Methodology），79（4）：1119－1141， 2017.

Mariadassou，S．Robin，and C．Vacher．Uncovering latent structure in valued graphs：a variational approach．The Annals of Applied Statistics，pages 715－742， 2010.

References II

Popovic, F. KC Hui, and D. I Warton. A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165:86-100, 2018.

Popovic, D. I. Warton, F. J. Thomson, F. K. C. Hui, and A. T. Moles. Untangling direct species associations from indirect mediator species effects with graphical models. Methods in Ecology and Evolution, 10(9):1571-1583, 2019.

Rubenstein, S. R Sundaresan, I. R Fischhoff, C. Tantipathananandh, and T. Y Berger-Wolf. Similar but different: dynamic social network analysis highlights fundamental differences between the fission-fusion societies of two equid species, the onager and Grevy's zebra. PloS one, 10(10):e0138645, 2015.

GSthwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461-464, 1978.
M.E Tipping and C. M Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B, 61(3):611-622, 1999.
D. Warton, F. G. Blanchet, R. B. O'Hara, O. Ovaskainen, S. Taskinen, S. C Walker, and F. KC. Hui. So many variables: joint modeling in community ecology. Trends in Ecology \& Evolution, 30(12):766-779, 2015.

[^0]: ${ }^{1} Y \sim \mathcal{N} \operatorname{eg} \mathcal{B}$ in $\quad \Leftrightarrow \quad Y \sim \mathcal{P}(\lambda U) \quad$ with $U \sim \mathcal{G}$ amma .

[^1]: ${ }^{1} Y \sim \mathcal{N} \operatorname{eg} \mathcal{B}$ in $\quad \Leftrightarrow \quad Y \sim \mathcal{P}(\lambda U) \quad$ with $U \sim \mathcal{G}$ amma .

[^2]: ${ }^{2}$ The higher, the less dispersed.

[^3]: ${ }^{2}$ The higher, the less dispersed.

[^4]: ${ }^{2}$ The higher, the less dispersed.

[^5]: ${ }^{2}$ The higher, the less dispersed.

[^6]: ${ }^{2}$ The higher, the less dispersed.

[^7]: ${ }^{2}$ The higher, the less dispersed.

[^8]: ${ }^{0}(Z, W)$ inverted in the figure

[^9]: ${ }^{0}(Z, W)$ inverted in the figure

