3 - Variational inference for species abundances and network models

S. Robin

INRAE / AgroParisTech / univ. Paris-Saclay Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

Outline

1 –	Models with latent variables in ecology	(statistical ecology
2 –	Variational inference for incomplete data models	(statistics)
3 –	Variational inference for species abundances and network models	(statistical ecology
4 –	Beyond variational inference	(statistics)

Part 3

Poisson log-normal model Illustration

Extensions of the Poisson log-normal model Dimension reduction

Network inference

Block-models Illustration

Extensions of block-models

Covariates Dynamic SBM

Metagenomics

To summarize

Outline

Poisson log-normal model Illustration

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- $ightharpoonup Y_{ij} = abundance of species j in site i$
- \triangleright x_i = vector of descriptors for site i

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- $ightharpoonup Y_{ij} = abundance of species j in site i$
- $\triangleright x_i = \text{vector of descriptors for site } i$

Abundance table Y

Hi.pl	An.lu	Me.ae	
31	0	108	
4	0	110	
27	0	788	

Environmental covariates X

Lat.	Long.	Depth	Temp.
71.10	22.43	349	3.95
71.32	23.68	382	3.75
71.60	24.90	294	3.45

Poisson log-normal model for species abundances

Data:

- n sites, p species, d covariates
- Y_{ii} = abundance of species j in site i
- $\triangleright x_i = \text{vector of descriptors for site } i$

Abundance table Y

Hi.pl	An.lu	Me.ae	
31	0	108	
4	0	110	
27	0	788	

Environmental covariates X

Lat.	Long.	Depth	Temp.
71.10	22.43	349	3.95
71.32	23.68	382	3.75
71.60	24.90	294	3.45

Poisson log-normal model.

Latent vectors

$$Z_i \sim \mathcal{N}(0, \Sigma)$$

Observed species counts

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^\mathsf{T} \beta_j + Z_{ij}))$$

Parameters

$$\theta = (\beta, \Sigma)$$

Variational inference

Conditional distribution.

▶ Because of the independance between sites

$$p_{\theta}(Z \mid Y) = \prod_{i} p_{\theta}(Z_i \mid Y_i)$$

▶ But $p_{\theta}(Z_i \mid Y_i)$ has no close form

Variational inference

Conditional distribution

Because of the independance between sites

$$p_{\theta}(Z \mid Y) = \prod_{i} p_{\theta}(Z_i \mid Y_i)$$

▶ But $p_{\theta}(Z_i \mid Y_i)$ has no close form

Variational approximation. Use a Gaussian approximate distribution

$$\mathcal{Q} = \{q: \quad q(Z) = \prod_{i \text{ no approx.}} q_i(Z_i), \quad q_i(Z_i) = \mathcal{N}(Z_i; m_i, S_i)\}$$

- Variational parameters: $m_i \simeq \mathbb{E}(Z_i \mid Y_i), \quad S_i \simeq \mathbb{V}(Z_i \mid Y_i)$

 $\textbf{Variational EM algorithm}. \ \textbf{PLNmodels} \ \textbf{R} \ \textbf{package} \ [\texttt{CMR18}]$

Variational EM algorithm. PLNmodels R package [CMR18]

▶ VE step: update the variational parameters m_i , S_i

$$(m_i^{h+1}, S_i^{h+1}) = \underset{m,S}{\text{arg min}} \ KL[\mathcal{N}(Z_i; m, S) \| p_{\theta^h}(Z_i \mid Y_i)]$$

Variational EM algorithm. PLNmodels R package [CMR18]

▶ VE step: update the variational parameters m_i , S_i

$$(m_i^{h+1}, S_i^{h+1}) = \underset{m,S}{\operatorname{arg \, min}} \ KL[\mathcal{N}(Z_i; m, S) \| p_{\theta^h}(Z_i \mid Y_i)]$$

→ Convex problem: doable via gradient descent

Variational EM algorithm. PLNmodels R package [CMR18]

▶ VE step: update the variational parameters m_i , S_i

$$(m_i^{h+1}, S_i^{h+1}) = \underset{m, S}{\text{arg min}} \ \textit{KL}[\mathcal{N}(\textit{Z}_i; m, S) \| p_{\theta^h}(\textit{Z}_i \mid \textit{Y}_i)]$$

- → Convex problem: doable via gradient descent
- ▶ M step: update the model parameters Σ , β

$$\theta^{h+1} = \arg\max_{\theta} \; \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)$$

Variational EM algorithm. PLNmodels R package [CMR18]

▶ VE step: update the variational parameters m_i , S_i

$$(m_i^{h+1}, S_i^{h+1}) = \underset{m,S}{\operatorname{arg \, min}} \ KL[\mathcal{N}(Z_i; m, S) || p_{\theta^h}(Z_i \mid Y_i)]$$

- → Convex problem: doable via gradient descent
- ▶ M step: update the model parameters Σ , β

$$heta^{h+1} = rg \max_{ heta} \; \mathbb{E}_{q^{h+1}} \log p_{ heta}(Y, Z)$$

- $\rightarrow \Sigma^{h+1}$: explicit formula
- $\rightarrow \beta^{h+1}$: similar to Poisson regression (generalized linear model)

Barents fishes: Full model

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^\mathsf{T} \beta_j + Z_{ij}))$$

 $x_i = all covariates$

Luxembourg, Dec'20

Barents fishes: Full model

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^\mathsf{T} \beta_j + Z_{ij}))$$

 $x_i = all covariates$

inferred correlations $\widehat{\Sigma}_{\text{full}}$

Barents fishes: Full model

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^{\mathsf{T}} \beta_j + Z_{ij}))$$

 $x_i = all covariates$

Barents fishes: Full model

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^{\mathsf{T}} \beta_j + Z_{ij}))$$

 $x_i = all covariates$

Null model

$$Y_{ij} \sim \mathcal{P}(\exp(\mu_j + Z_{ij}))$$

no covariate

Barents fishes: Full model

$$Y_{ij} \sim \mathcal{P}(\exp(x_i^{\mathsf{T}} \beta_i + Z_{ij}))$$

 $x_i = all covariates$

Null model

$$Y_{ij} \sim \mathcal{P}(\exp(\mu_j + Z_{ij}))$$

no covariate

inferred correlations $\widehat{\Sigma}_{null}$

Outline

Poisson log-normal model Illustration

Extensions of the Poisson log-normal model
Dimension reduction
Network inference

Block-models Illustration

Extensions of block-models

Covariates
Dynamic SBM
Metagenomics

To summarize

Dimension reduction

Typical context.

- Microbial ecology: $p = 10^2$, 10^3 , 10^4 species
- 'Abundance' = 'read' count = number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Dimension reduction

Typical context.

- Microbial ecology: $p = 10^2$, 10^3 , 10^4 species
- 'Abundance' = 'read' count = number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Aim.

- ▶ Dimension reduction (visualization)
- ► Accounting for major known effects

Dimension reduction

Typical context.

- Microbial ecology: $p = 10^2$, 10^3 , 10^4 species
- 'Abundance' = 'read' count = number of genomic sequences associated with each species sampled via high-troughput sequencing ('metagenomic')

Aim.

- ▶ Dimension reduction (visualization)
- ► Accounting for major known effects

Probabilistic principal component analysis. Gaussian setting [TB99]:

$$\Sigma = \underbrace{\mathcal{B}\mathcal{B}^{\mathsf{T}}}_{\text{low rank}} + \sigma^2 I_p,$$
 where $B(p \times r)$

PLN-PCA model. [CMR18]

PLN-PCA model. [CMR18]

► Low dimension latent vector

$$W_i \sim \mathcal{N}_r(0, I),$$

where $r \ll p$

PLN-PCA model. [CMR18]

► Low dimension latent vector

$$W_i \sim \mathcal{N}_r(0, I)$$
, where $r \ll p$

p-dimensional latent vector

$$Z_i = BW_i$$
 where $B(p \times r) =$ loading matrix

PLN-PCA model. [CMR18]

► Low dimension latent vector

$$W_i \sim \mathcal{N}_r(0, I),$$
 where $r \ll p$

p-dimensional latent vector

$$Z_i = BW_i$$
 where $B(p \times r) =$ loading matrix

Observed counts

$$Y_{ij} \sim \mathcal{P}(\exp(\mathbf{o}_{ij} + x_i^\mathsf{T} \beta + Z_{ij}))$$

 $o_{ij} = \text{known 'offset' coefficient, accounting for the sampling effort}$

PLN-PCA model. [CMR18]

► Low dimension latent vector

$$W_i \sim \mathcal{N}_r(0, I)$$
, where $r \ll p$

p-dimensional latent vector

$$Z_i = BW_i$$
 where $B(p \times r) =$ loading matrix

Observed counts

$$Y_{ij} \sim \mathcal{P}(\exp(\mathbf{o}_{ij} + x_i^\mathsf{T} \beta + Z_{ij}))$$

 $o_{ij} = \text{known 'offset' coefficient, accounting for the sampling effort}$

Parameters

$$\theta = (\text{loading matrix } B, \text{regression coefficient } \beta)$$
 (+rank r)

VEM algorithm.

VEM algorithm.

- ▶ VE step: update the variational parameters $m_i^{h+1} = \mathbb{E}_{q_i^{h+1}}(W_i)$ and $S_i^{h+1} = \mathbb{E}_{q_i^{h+1}}(W_i)$
 - $\,\rightarrow\,$ Similar to the VE step of regular PLN

VEM algorithm.

- $lackbox{ VE step:}$ update the variational parameters $m_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$ and $S_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$
 - ightarrow Similar to the VE step of regular PLN
- ▶ M step: update the model parameters B^{h+1} and β^{h+1}
 - → no close form, but still convex problem (gradient descent)

Model selection.

VEM algorithm.

- $lackbox{\sf VE}$ step: update the variational parameters $m_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$ and $S_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$
 - ightarrow Similar to the VE step of regular PLN
- ▶ M step: update the model parameters B^{h+1} and β^{h+1}
 - → no close form, but still convex problem (gradient descent)

Model selection.

▶ BIC penalty [Sch78] (Laplace approximation): $pen_{BIC}(\theta) = (\underbrace{p \ d}_{B} + \underbrace{p \ r}_{B})log \ n/2$

VEM algorithm.

- ightharpoonup VE step: update the variational parameters $m_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$ and $S_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$
 - ightarrow Similar to the VE step of regular PLN
- ▶ M step: update the model parameters B^{h+1} and β^{h+1}
 - → no close form, but still convex problem (gradient descent)

Model selection.

- ▶ BIC penalty [Sch78] (Laplace approximation): $pen_{BIC}(\theta) = (\underbrace{p \ d}_{\beta} + \underbrace{p \ r}_{B})log \ n/2$
- ▶ Heuristic adaptation (replace log $p_{\theta}(Y)$ with $J_{\theta,\sigma}(Y)$)

$$vBIC = J_{\theta,q}(Y) - pen_{BIC}(\theta)$$

VEM algorithm.

- $lackbox{\sf VE}$ step: update the variational parameters $m_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$ and $S_i^{h+1}=\mathbb{E}_{q_i^{h+1}}(W_i)$
 - ightarrow Similar to the VE step of regular PLN
- ▶ M step: update the model parameters B^{h+1} and β^{h+1}
 - → no close form, but still convex problem (gradient descent)

Model selection.

- ▶ BIC penalty [Sch78] (Laplace approximation): $pen_{BIC}(\theta) = (\underbrace{p\ d}_{\beta} + \underbrace{p\ r}_{B})log\ n/2$
- ▶ Heuristic adaptation (replace log $p_{\theta}(Y)$ with $J_{\theta,q}(Y)$)

$$vBIC = J_{\theta,q}(Y) - pen_{BIC}(\theta)$$

▶ Inspired from [BCG00] (additional penalty for the conditional entropy the W_i 's)

$$vICL = J_{\theta,q}(Y) - pen_{BIC}(\theta) - \mathcal{H}(q) = \mathbb{E}_q \log p_{\theta}(Y, Z) - pen_{BIC}(\theta)$$

Oak powdery mildew

Metabarcoding data [JFS⁺16]

- ▶ p = 114 OTUs (66 bacteria and 48 fungi)
- \triangleright n = 116 leaves
- collected on 3 trees
 - resistant
 - intermediate
 - susceptible

to oak powdery mildew;

 different protocole for bacteria and fungi
 o_{ij} = sequencing depth

Metabarcoding data $[JFS^+16]$

- p = 114 OTUs (66 bacteria and 48 fungi)
- ightharpoonup n = 116 leaves
- collected on 3 trees
 - resistant
 - intermediate
 - susceptible

to oak powdery mildew;

 different protocole for bacteria and fungi
 o_{ij} = sequencing depth

Oak powdery mildew

$Metabarcoding\ data\ [JFS^+16]$

- p = 114 OTUs (66 bacteria and 48 fungi)
- ▶ n = 116 leaves
- collected on 3 trees
 - resistant
 - intermediate
 - susceptible

to oak powdery mildew;

different protocole for bacteria and fungi o_{ii} = sequencing depth

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

Species interaction networks.

- ► Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species
- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)
- → Obviously, analyses based on co-occurences or correlations are not sufficient [PWT⁺19]

Network inference

Species interaction networks.

- Aim: Understand how species from a same community interact
- Network representation = draw an edge between interacting pairs of species

- Main issue: Distinguish direct interactions (predator-prey) from simple associations (two preys of a same predator)
- → Obviously, analyses based on co-occurences or correlations are not sufficient [PWT⁺19]

Probabilistic translation

 ${\sf association} = {\sf marginal} \ {\sf dependance}$ ${\sf direct \ interaction} = {\sf conditional} \ {\sf dependance}$

Definition. $p(U_1, \ldots U_k)$ is faithful to the (chordal) graph G = ([k], E) iff

$$p(U_1,\ldots U_k) \propto \prod_{C \in \mathcal{C}} \psi_C(U_C)$$

where $C = \{\text{cliques of } G\}$ and $U_C = (Y_j)_{j \in C}$.

Definition. $p(U_1, \dots U_k)$ is faithful to the (chordal) graph G = ([k], E) iff

$$p(U_1,\ldots U_k) \propto \prod_{C\in\mathcal{C}} \psi_C(U_C)$$

where $C = \{\text{cliques of } G\}$ and $U_C = (Y_j)_{j \in C}$.

Property.

separation ⇔ conditional independance

Definition. $p(U_1, \dots U_k)$ is faithful to the (chordal) graph G = ([k], E) iff

$$p(U_1,\ldots U_k) \propto \prod_{C\in\mathcal{C}} \psi_C(U_C)$$

where $C = \{\text{cliques of } G\}$ and $U_C = (Y_j)_{j \in C}$.

Property.

separation

 \Leftrightarrow

conditional independance

Example.

$$C_1 = \{1, 2, 3\}, C_2 = \{3, 4\}$$

Definition. $p(U_1, \dots U_k)$ is faithful to the (chordal) graph G = ([k], E) iff

$$p(U_1,\ldots U_k) \propto \prod_{C\in\mathcal{C}} \psi_C(U_C)$$

where $C = \{\text{cliques of } G\}$ and $U_C = (Y_j)_{j \in C}$.

Property.

separation

 \Leftrightarrow

conditional independance

Example.

$$C_1 = \{1, 2, 3\}, C_2 = \{3, 4\}$$

$$p(U_1, U_2, U_3, U_4) \propto \psi_1(U_1, U_2, U_3) \ \psi_2(U_3, U_4)$$

- \blacktriangleright (U_1, U_2, U_3, U_4) all dependent
- $V_1 \not\perp U_2 \mid (U_3, U_4)$
- $ightharpoonup U_4 \not\perp\!\!\!\perp U_1 \mid U_2$
- $V_4 \perp (U_1, U_2) \mid U_3$

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega = [\omega_{jk}] = \Sigma^{-1}$ the *precision* matrix:

$$\sigma_{jk} = 0 \Leftrightarrow (Z_j, Z_k)$$
 independent

('correlation')

$$\omega_{jk} = 0 \Leftrightarrow (Z_j, Z_k)$$
 independent $|(Z_h)_{h \neq j,k}|$

('partial correlation')

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega = [\omega_{jk}] = \Sigma^{-1}$ the *precision* matrix:

$$\sigma_{jk}=0\Leftrightarrow (Z_j,Z_k)$$
 independent ('correlation')
$$\omega_{jk}=0\Leftrightarrow (Z_j,Z_k) \text{ independent } \mid (Z_h)_{h\neq i,k}$$
 ('partial correlation')

 $\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega = [\omega_{jk}] = \Sigma^{-1}$ the precision matrix:

$$\sigma_{jk} = 0 \Leftrightarrow (Z_j, Z_k)$$
 independent

('correlation')

$$\omega_{jk} = 0 \Leftrightarrow (Z_j, Z_k) \text{ independent } | (Z_h)_{h \neq j,k}$$

('partial correlation')

 $\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Graphical lasso. [FHT08]

► Common assumption: few species are in direct interaction

$$\Rightarrow \Omega$$
 should be sparse

(many 0's)

Suppose $Z \sim \mathcal{N}(0, \Sigma)$ and denote by $\Omega = [\omega_{jk}] = \Sigma^{-1}$ the precision matrix:

$$\sigma_{jk} = 0 \Leftrightarrow (Z_j, Z_k)$$
 independent ('correlation')

$$\omega_{jk} = 0 \Leftrightarrow (Z_j, Z_k) \text{ independent } \mid (Z_h)_{h \neq j,k} \tag{'partial correlation'}$$

 $\rightarrow \Omega$ only refers to 'direct' dependencies $\Rightarrow G$ given by the support of Ω

Graphical lasso. [FHT08]

► Common assumption: few species are in direct interaction

$$\Rightarrow$$
 Ω should be sparse (many 0's)

► Sparsity-inducing penalty (graphical lasso)

$$\max_{\Omega} \, \log p(Z;\Omega) - \lambda \underbrace{\sum_{j \neq k} |\omega_{jk}|}_{\ell_1 \, \text{penalty}}$$

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$\arg\max_{\beta,\Omega,q\in\mathcal{Q}}\;J(\beta,\Omega,q)-\underbrace{\lambda\sum_{j\neq k}|\omega_{jk}|}_{\ell_1\;\text{penalty}}$$

 \rightarrow Convex problem for both the VE and the M step

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$\arg\max_{\beta,\Omega,q\in\mathcal{Q}}\;J(\beta,\Omega,q)-\lambda\underbrace{\sum_{j\neq k}|\omega_{jk}|}_{\ell_1\;\text{penalty}}$$

 \rightarrow Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$\arg\max_{\beta,\Omega,q\in\mathcal{Q}}\;J(\beta,\Omega,q)-\underbrace{\lambda\sum_{j\neq k}|\omega_{jk}|}_{\ell_1\;\text{penalty}}$$

→ Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$\arg\max_{\beta,\Omega,q\in\mathcal{Q}}\;J(\beta,\Omega,q)-\underbrace{\lambda\sum_{j\neq k}|\omega_{jk}|}_{\ell_1\;\text{penalty}}$$

→ Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

PLN-network. PLN model with graphical lasso penalty [CMR19]

$$\arg\max_{\beta,\Omega,q\in\mathcal{Q}}\;J(\beta,\Omega,q)-\underbrace{\lambda\sum_{j\neq k}|\omega_{jk}|}_{\ell_1\;\text{penalty}}$$

→ Convex problem for both the VE and the M step

Inferring the latent dependency structure, not the abundance one

→ Similar setting for most approaches in statistical ecology [WBO+15,KMM+15,FHZD17,PHW18]

Barents' fish species

Data:

- n = 89 sites
- p = 30 species
- d = 4 covariates
 - latitude
 - ► longitude
 - temperature
 - ▶ depth

Barents' fish species: choosing λ

Alternatively.

Use resampling and select edges based on selection frequency

[LRW10]

Outline

Poisson log-normal model

Extensions of the Poisson log-normal mode Dimension reduction Network inference

Block-models Illustration

Extensions of block-model Covariates Dynamic SBM

Dynamic SBM Metagenomics

To summarize

Stochastic block-model for ecological networks

Data:

- n species
- ► Y_{ij} = 'intensity' (e.g. count) of the link between species i and j

Adjacency matrix.

Stochastic block-model for ecological networks

Data:

- n species
- Y_{ij} = 'intensity' (e.g. count) of the link between species i and j

Adjacency matrix.

Stochastic block-model.

- ► K groups
- Latent group membership

$$Z_i \sim \mathcal{M}(1,(\pi_1,\ldots\pi_K))$$

Observed count

$$Y_{ij} \sim \mathcal{P}(\exp(\alpha_{Z_i,Z_i}))$$

Parameters

$$\theta = (\pi, \alpha)$$

+K

Illustration

Variational inference

Conditional distribution.

► Group memberships:

$$Z_i \perp \!\!\! \perp Z_j$$
 but $Z_i \not \perp \!\!\! \perp Z_j \mid Y_{ij}$

 $ightharpoonup p_{\theta}(Z \mid Y)$ is intractable

Variational inference

Conditional distribution.

Group memberships:

$$Z_i \perp \!\!\! \perp Z_j$$
 but $Z_i \not\perp \!\!\! \perp Z_j \mid Y_{ij}$

 $\triangleright p_{\theta}(Z \mid Y)$ is intractable

Variational approximation. Use a factorable approximate distribution

$$\mathcal{Q} = \{q: \quad q(Z) = \prod_i q_i(Z_i), \quad \underbrace{q_i(Z_i) = \mathcal{M}(Z_i; 1, \tau_i)}_{ ext{no approximation}} \}$$

Variational parameters: $\tau_{ik} \simeq \Pr(Z_i = k \mid Y)$

Variational EM algorithm. blockmodels R package [Lég16]

Variational EM algorithm. blockmodels R package [Lég16]

 \blacktriangleright VE step: update the variational parameters τ_i

$$\tau_{ik}^{h+1} \propto \pi_k^h \prod_{j \neq i} \prod_{\ell} p_{\theta^h}(Y_{ij} \mid Z_i = k, Z_j = \ell)^{\tau_{j\ell}^{h+1}}$$

Variational EM algorithm. blockmodels R package [Lég16]

ightharpoonup VE step: update the variational parameters au_i

$$\tau_{ik}^{h+1} \propto \pi_k^h \prod_{j \neq i} \prod_{\ell} p_{\theta^h}(Y_{ij} \mid Z_i = k, Z_j = \ell)^{\tau_{j\ell}^{h+1}}$$

ightarrow Fix-point algorithm

Variational EM algorithm. blockmodels R package [Lég16]

 \triangleright VE step: update the variational parameters τ_i

$$au_{ik}^{h+1} \propto \pi_k^h \prod_{j \neq i} \prod_{\ell} p_{\theta^h}(Y_{ij} \mid Z_i = k, Z_j = \ell)^{\tau_{j\ell}^{h+1}}$$

- → Fix-point algorithm
- M step: update the model parameters π , α

$$\theta^{h+1} = rg \max_{\theta} \ \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)$$

Variational EM algorithm, blockmodels R package [Lég16]

 \triangleright VE step: update the variational parameters τ_i

$$au_{ik}^{h+1} \propto \pi_k^h \prod_{j \neq i} \prod_{\ell} p_{\theta^h}(Y_{ij} \mid Z_i = k, Z_j = \ell)^{ au_{j\ell}^{h+1}}$$

- → Fix-point algorithm
- M step: update the model parameters π , α

$$\theta^{h+1} = rg \max_{\theta} \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)$$

 \rightarrow Close form for both π^{h+1} and α^{h+1}

Variational EM algorithm. blockmodels R package [Lég16]

 \blacktriangleright VE step: update the variational parameters τ_i

$$au_{ik}^{h+1} \propto \pi_k^h \prod_{j \neq i} \prod_{\ell} p_{\theta^h}(Y_{ij} \mid Z_i = k, Z_j = \ell)^{ au_{j\ell}^{h+1}}$$

- → Fix-point algorithm
- ▶ M step: update the model parameters π , α

$$\theta^{h+1} = rg \max_{\theta} \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)$$

 \rightarrow Close form for both π^{h+1} and α^{h+1}

Model selection. To choose the number of groups K: vBIC or vICL with penalty

$$\mathsf{pen}_{\mathit{BIC}}(\theta) = \underbrace{(K-1)\frac{\log n}{2}}_{\text{node memberships}} + \underbrace{\frac{K(K+1)}{2}\frac{\log(n(n-1))}{2}}_{\text{node links}}$$

A first illustration: Tree species network

Simple model: No covariate

$$Y_{ij} \sim \mathcal{P}(\exp(\alpha_{Z_i Z_j}))$$

 Y_{ij} = number of shared fungal parasites

$$\widehat{K}_{ICL} = 7$$

adjacency matrix Y

clustered matrix

A first illustration: Tree species network

Simple model: No covariate

$$Y_{ij} \sim \mathcal{P}(\exp(\alpha_{Z_i Z_j}))$$

 $Y_{ij} =$ number of shared fungal parasites

$$\widehat{K}_{ICL} = 7$$

adjacency matrix Y

clustered matrix

'Validation'

comparison with the phylogenetic classification

(conipherophyta vs magnoliophyta)

Outline

Extensions of block-models Covariates Dynamic SBM

Metagenomics

Adding a regression term.

- Information about similarity or dissimilarity between species is often available
- → taxonomic, phylogenetic or geographic distance
- Obvious generalization of the stochastic block-model [MRV10]:

$$Y_{ij} \sim \mathcal{P}(\exp(\alpha_{Z_i Z_j} + x_{ij}^{\mathsf{T}} \beta))$$

- $\rightarrow x_{ij}$ = vector of covariates for the pair (i,j)
- Parameters: $\theta = (\pi, \alpha, \beta)$

Accounting for covariates

Adding a regression term.

- Information about similarity or dissimilarity between species is often available
- → taxonomic, phylogenetic or geographic distance
- Obvious generalization of the stochastic block-model [MRV10]:

$$Y_{ij} \sim \mathcal{P}(\exp(\alpha_{Z_i Z_j} + x_{ij}^{\mathsf{T}} \beta))$$

- $\rightarrow x_{ii}$ = vector of covariates for the pair (i, j)
- Parameters: $\theta = (\pi, \alpha, \beta)$

Variational EM algorithm. [MRV10]

- Very similar to SBM without covariates
- Estimation of β via weighted generalized linear model

Tree species network

Covariate:

 $x_{ij} = \text{taxonomic distance}$

Estimates:

$$\widehat{K}_{ICL} = 4$$
 $\widehat{\beta} = -.317$

$$\widehat{\beta} = -.317$$

No covariate: $\widehat{K}_{ICI} = 7$

Taxonomic dist.: $\hat{K}_{ICI} = 4$

Tree species network

Covariate:

 $x_{ii} = taxonomic distance$

Estimates:

$$\widehat{K}_{ICL} = 4$$

$$\widehat{\beta} = -.317$$

- Taxonomy (partially) explains the links (smaller \widehat{K})
- Distant species share less parasites $(\widehat{\beta} < 0)$
- The remaining structure is not related to taxonomy

No covariate: $\hat{K}_{ICI} = 7$

Taxonomic dist.: $\hat{K}_{ICI} = 4$

Animal behavior

Data: [RSF⁺15]

- ► Consider *n* individuals (animals) along *T* times (days, weeks)
- At each time, observe

 Y_{ii}^t = intensity of the social interaction between individuals i and j at time t

Animal behavior

Data: [RSF⁺15]

- ► Consider *n* individuals (animals) along *T* times (days, weeks)
- At each time, observe

 $Y_{ij}^t = \text{intensity of the social interaction between individuals } i \text{ and } j \text{ at time } t$

Questions:

- ▶ Do the individuals play different roles in the social network
- Do these roles change over time

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ightharpoonup Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ▶ Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ▶ Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ightharpoonup Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ightharpoonup Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Dynamic stochastic block-model. [MM17]

- ► Assume that individuals belong to *K* clusters ('roles')
- ▶ Denote by Z_i^t the (latent) role of individual i at time t
- ▶ The successive roles of each individuals are independent Markov chains

$$Z_i = \{Z_i^t\}_{1 \leq t \leq T} \sim MC(\nu_1, \pi)$$

$$\{Y_{ij}^t\}_{i,j,t} \text{independent } \mid \{Z_i^t\}_{i,t}, \qquad Y_{ij}^t \mid Z_i^t, Z_j^t \sim F(\cdot; \gamma_{Z_i^t, Z_i^t})$$

Intractable EM. Denoting $Z^t = (Z_1^t, \dots Z_n^t)$, $(Z^t \mid Y)_{t \geq 1}$ is a Markov chain \dots with K^n states

S. Robin

3 - Variational inference for species abundances and network models

Intractable EM. Denoting $Z^t = (Z_1^t, \dots Z_n^t)$, $(Z^t \mid Y)_{t \geq 1}$ is a Markov chain ... with K^n states

Intractable EM. Denoting $Z^t = (Z_1^t, \dots Z_n^t)$, $(Z^t \mid Y)_{t \geq 1}$ is a Markov chain ... with K^n states

Intractable EM. Denoting $Z^t=(Z_1^t,\dots Z_n^t)$, $(Z^t\mid Y)_{t\geq 1}$ is a Markov chain \dots with K^n states

Intractable EM. Denoting $Z^t = (Z_1^t, \dots, Z_n^t), (Z^t \mid Y)_{t \geq 1}$ is a Markov chain ... with K^n states

Approximation classe. $p_{\theta}(Z \mid Y) \simeq q(Z) = \text{product of independent Markov chains (partial factorization)}$

$$\mathcal{Q} = \left\{q: \quad q(Z) = \prod_i q_i(Z_i), \quad q_i(Z_i) = q_i(Z_i^1) \prod_{t>1} q_i(Z_i^t \mid Z_i^{t-1})\right\}$$

Intractable EM. Denoting $Z^t = (Z_1^t, \dots Z_n^t)$, $(Z^t \mid Y)_{t \ge 1}$ is a Markov chain ... with K^n states

Approximation classe. $p_{\theta}(Z \mid Y) \simeq q(Z) = \text{product of independent Markov chains (partial factorization)}$

$$\mathcal{Q} = \left\{q: \quad q(Z) = \prod_i q_i(Z_i), \quad q_i(Z_i) = q_i(Z_i^1) \prod_{t>1} q_i(Z_i^t \mid Z_i^{t-1}) \right\}$$

VEM algorithm.

 \triangleright VE step = running *n* forward-backward recursions

Onager social network

Data from [RSF⁺15]. n = 23 onagers, observations gathered into T = 4 time periods in [MM17].

- 4 groups (='roles') are found, from isolated to highly central
- A fraction of individuals do change role from one period to another

Comparative metagnomics.

- ▶ n samples (soil surrounding the root of a plant rhizoshpere with given genotype), p bacterial species (Operational Taxonomy Units = OTUs),
- Y_{ii} = number of reads from species j in sample i

 $^{^1} Y \sim \mathcal{N} eg \mathcal{B} in$

Comparative metagnomics.

- ▶ n samples (soil surrounding the root of a plant rhizoshpere with given genotype), p bacterial species (Operational Taxonomy Units = OTUs),
- Y_{ii} = number of reads from species j in sample i
- Question: Do preferential (or negative) associations exist between groups of genotypes and groups of bacteria?
- Over-dispersion: Due to technological variability, counts are over-dispersed wrt Poisson
 - → Negative-binomial (= Poisson-Gamma¹) distribution for the count

32 / 36

 $^{^1} Y \sim \mathcal{N} eg \mathcal{B} in$ \Leftrightarrow $Y \sim \mathcal{P}(\lambda U)$ with $U \sim \mathcal{G}$ amma.

Model.

²The higher, the less dispersed.

Model.

• $\{Z_i\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi =$ proportions of sample groups

$$Z_i \sim \mathcal{M}(1,\pi)$$

²The higher, the less dispersed.

Model.

 $lackbrack \{Z_i\}_{1\leq i\leq n}$ sample memberships (among K groups) $\pi=$ proportions of sample groups

$$Z_i \sim \mathcal{M}(1,\pi)$$

• $\{W_j\}_{1\leq j\leq p}$ species memberships (among L groups) $\rho=$ proportions of species groups

$$W_i \sim \mathcal{M}(1, \rho)$$

²The higher, the less dispersed.

Model.

• $\{Z_i\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi =$ proportions of sample groups

$$Z_i \sim \mathcal{M}(1,\pi)$$

• $\{W_j\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho =$ proportions of species groups

$$W_i \sim \mathcal{M}(1,
ho)$$

• $\{U_{ij}\}_{1 \le i \le n, 1 \le j \le p}$ random effects $a = \text{overdispersion parameter}^2$

$$U_{ij} \sim \mathcal{G}amma(a, a)$$

²The higher, the less dispersed.

Model.

• $\{Z_i\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi =$ proportions of sample groups

$$Z_i \sim \mathcal{M}(1,\pi)$$

• $\{W_j\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho =$ proportions of species groups

$$W_i \sim \mathcal{M}(1,
ho)$$

• $\{U_{ij}\}_{1 \le i \le n, 1 \le j \le p}$ random effects $a = \text{overdispersion parameter}^2$

$$U_{ij} \sim \mathcal{G}amma(a, a)$$

 $lackbrack \{Y_{ij}\}_{1\leq i\leq n, 1\leq j\leq p}$ observed counts $\mu_j=$ mean (log-)abundance of species j

$$Y_{ij} \sim \mathcal{P}(\exp(o_i + \mu_j + \alpha_{Z_iW_j} + \log U_{ij}))$$

 $o_{ij} = \text{known sampling effort for species } j \text{ in sample } i$

²The higher, the less dispersed.

Model.

• $\{Z_i\}_{1 \leq i \leq n}$ sample memberships (among K groups) $\pi =$ proportions of sample groups

$$Z_i \sim \mathcal{M}(1,\pi)$$

 $V = \{W_j\}_{1 \leq j \leq p}$ species memberships (among L groups) $\rho =$ proportions of species groups

$$W_i \sim \mathcal{M}(1,
ho)$$

• $\{U_{ij}\}_{1 \le i \le n, 1 \le j \le p}$ random effects $a = \text{overdispersion parameter}^2$

$$U_{ij} \sim \mathcal{G}amma(a, a)$$

 $lackbrack \{Y_{ij}\}_{1\leq i\leq n, 1\leq j\leq p}$ observed counts $\mu_j=$ mean (log-)abundance of species j

$$Y_{ij} \sim \mathcal{P}(\exp(o_i + \mu_j + \alpha_{Z_iW_i} + \log U_{ij}))$$

 $o_{ij} = \text{known sampling effort for species } j \text{ in sample } i$

Parameters.

$$\theta = (\pi, \rho, \mathbf{a}, \alpha, \mu) + (K, L)$$

²The higher, the less dispersed.

Rhizoshpere clustering

Variational EM. Using

$$q(Z,W,U)=q_Z(Z)\;q_W(W)\;q_U(U)$$

Model selection with \emph{vICL} including $\mathcal{H}(q_Z)$ and $\mathcal{H}(q_W)$

 $^{^{0}(}Z,W)$ inverted in the figure

Rhizoshpere clustering

Variational EM. Using

$$q(Z,W,U)=q_Z(Z)\;q_W(W)\;q_U(U)$$

Model selection with vICL including $\mathcal{H}(q_Z)$ and $\mathcal{H}(q_W)$

Results.

- $ightharpoonup \widehat{K}=4$ sample groups, $\widehat{L}=10$ bacteria groups
- Contrasted interactions: $\alpha_{\mathit{kg}} \in [-.5, 1.2]$
- Sample groups display different biodiversity (Shannon index)

 $^{^{0}(}Z,W)$ inverted in the figure

Outline

Poisson log-normal model Illustration

Extensions of the Poisson log-normal mode Dimension reduction Network inference

Block-models Illustration

Extensions of block-models

Covariates

Dynamic SBN

Metagenomics

To summarize

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- ▶ Variational approximation: efficient approach for their inference
 - $\,\rightarrow\,$ Mostly rely on the choice of the approximation class

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- ▶ Variational approximation: efficient approach for their inference
 - ightarrow Mostly rely on the choice of the approximation class

Many other problems/models.

 Account for a spatial structure, fundamental niche vs realized niche, looking for some structured in an inferred network, ...

To summarize

VEM for latent models.

- Latent variable models: flexible and explicit framework for modelling
- ▶ Variational approximation: efficient approach for their inference
 - → Mostly rely on the choice of the approximation class

Many other problems/models.

 Account for a spatial structure, fundamental niche vs realized niche, looking for some structured in an inferred network, ...

Statistical guarantees.

- General properties of variational estimates?
- Combining VEM with other inference methods

References I

Bernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Machine Intel., 22(7):719-25, 2000.

liquet, M. Mariadassou, and S. Robin. Variational inference for probabilistic Poisson PCA. The Annals of Applied Statistics, 12(4):2674-2698, 2018.

🚮 iquet. M. Mariadassou, and S. Robin. Variational inference for sparse network reconstruction from count data. In International Conference on Machine Learning, pages 1162-1171, 2019.

🖪 edman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008

🌡ng, C. Huang, H. Zhao, and M. Deng. gCoda: conditional dependence network inference for compositional data. Journal of Computational Biology, 24(7):699-708, 2017,

🏿 kuschkin, V. Fievet, L. Schwaller, T. Fort, C. Robin, and C. Vacher. Deciphering the pathobiome: Intra-and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microbial ecology, pages 1-11, 2016.

Kurtz, C. L. Müller, E. R. Miraldi, D. R. Littman, M. J. Blaser, and R. A. Bonneau. Sparse and compositionally robust inference of microbial ecological networks. PLoS computational biology, 11(5):e1004226, 2015.

J 🔣 Léger. Blockmodels: A R-package for estimating in latent block model and stochastic block model, with various probability functions, with or without covariates. Technical report, arXiv:1602.07587, 2016.

眞u, K. Roeder, and L. Wasserman. Stability approach to regularization selection (StARS) for high dimensional graphical models. In Advances in neural information processing systems, pages 1432-1440, 2010.

Matias and V. Miele. Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1119-1141, 2017.

ariadassou, S. Robin, and C. Vacher. Uncovering latent structure in valued graphs: a variational approach. The Annals of Applied Statistics, pages 715-742, 2010.

References II

Popovic. F. KC Hui, and D. I Warton. A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165:86–100, 2018.

Popovic, D. I. Warton, F. J. Thomson, F. K. C. Hui, and A. T. Moles. Untangling direct species associations from indirect mediator species effects with graphical models. Methods in Ecology and Evolution, 10(9):1571-1583, 2019.

Rubenstein, S. R Sundaresan, I. R Fischhoff, C. Tantipathananandh, and T. Y Berger-Wolf. Similar but different: dynamic social network analysis highlights fundamental differences between the fission-fusion societies of two equid species, the onager and Grevy's zebra. PloS one, 10(10):e0138645, 2015

Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461-464, 1978.

Tipping and C. M Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B, 61(3):611-622, 1999.

Warton, F. G. Blanchet, R. B. O'Hara, O. Ovaskainen, S. Taskinen, S. C Walker, and F. KC. Hui. So many variables: joint modeling in community ecology, Trends in Ecology & Evolution, 30(12):766-779, 2015.