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Outline

Models with latent variables in ecology

Variational inference for incomplete data models

Variational inference for species abundances and network models

Beyond variational inference
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Part 3

Poisson log-normal model
lllustration

Extensions of the Poisson log-normal model
Dimension reduction
Network inference

Block-models
lllustration

Extensions of block-models
Covariates
Dynamic SBM
Metagenomics

To summarize
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Poisson log-normal model Ilustration

Outline

Poisson log-normal model
lllustration
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Poisson log-normal model Ilustration

Poisson log-normal model for species abundances

Data:
P n sites, p species, d covariates
> Yj; = abundance of species j in site i

» x; = vector of descriptors for site i
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Poisson log-normal model Ilustration

Poisson log-normal model for species abundances

Data:
P n sites, p species, d covariates
> Yj; = abundance of species j in site i

» x; = vector of descriptors for site i

Abundance table Y
Hi.pl An.lu Me.ae

31 0 108
4 0 110

27 0 788

Environmental covariates X
Lat. Long. Depth Temp.

71.10 22.43 349 3.95
71.32 23.68 382 3.75
71.60 24.90 294 3.45
S. Robin 3 - Variational inference for species abundances and network models

Luxembourg, Dec’20

5/36



Poisson log-normal model Ilustration

Poisson log-normal model for species abundances

Data:
P n sites, p species, d covariates
» Yj; = abundance of species j in site i

» x; = vector of descriptors for site i .
Poisson log-normal model.

» Latent vectors
Abundance table Y

Hi.pl An.lu Me.ae

31 0 08 Z; ~ N(0,%)
4 0 110

27 0 788 » Observed species counts
Yij ~ Pexp(x] B + Zj))

. . » Parameters
Environmental covariates X

Lat. Long. Depth Temp.

71.10 22.43 349 3.95 0= (B’ z)
71.32 23.68 382 3.75
71.60 24.90 294 3.45
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Poisson log-normal model Ilustration

Variational inference

Conditional distribution.

» Because of the independance between sites

po(Z]Y)= Hpe(zi | Yi)

> But pg(Z; | Y;) has no close form
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Poisson log-normal model Ilustration

Variational inference

Conditional distribution.

» Because of the independance between sites

P21 ) =TTen@ 1Y)

> But pg(Z; | Y;) has no close form

Variational approximation. Use a Gaussian approximate distribution

Q={q: q(2)= H qi(Zi), qi(Z) = N(Zi; mj, S;)}
N

no approx.

» Variational parameters: m; ~E(Z; | Y:), Si~V(Z|Y))
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Poisson log-normal model Ilustration

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]
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Poisson log-normal model Ilustration

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]
» VE step: update the variational parameters m;, S;

(mf*h, ST = argmin KLIN(Zi; m, S)|lpgn(Zi | Y7)]

m,
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Poisson log-normal model Ilustration

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

» VE step: update the variational parameters m;, S;

(m*1, SPH) = argmin KLIN(Zi; m, S)||pgn(Z; | Yi)]

m,

— Convex problem: doable via gradient descent
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Poisson log-normal model Ilustration

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

» VE step: update the variational parameters m;, S;

(m*1, SPH) = argmin KLIN(Zi; m, S)||pgn(Z; | Yi)]

m,

— Convex problem: doable via gradient descent

» M step: update the model parameters X, 8

0"t = arg max Eght1 log pe(Y, Z)
0
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Poisson log-normal model Ilustration

Variational EM

Variational EM algorithm. PLNmodels R package [CMR18]

» VE step: update the variational parameters m;, S;

(mf+t, SPHY) = argmin KLIN(Z;; m, S)||pgn(Zi | Vi)

m,S

— Convex problem: doable via gradient descent

> M step: update the model parameters X, 3

0" = arg max Egni1 log po(Y, Z)
0

— XML explicit formula

— B"*1: similar to Poisson regression (generalized linear model)
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Poisson log-normal model  Illustration

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model
Yjj ~ P(exp(x B + Zj))

x; = all covariates
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Poisson log-normal model Ilustration

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model
Yij ~ P(exp(x] 5 + Zyj))

x; = all covariates

inferred correlations g

species

species
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Poisson log-normal model Ilustration

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model
Yjj ~ P(exp(x B + Zj))
x; = all covariates

correlations between
inferred correlations X predictions: x[ 3;

species
species
15

s 10 15 20 25 0

species species
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Poisson log-normal model Ilustration

A first illustration: Abiotic vs biotic interactions

Barents fishes: Full model Null model
Yij ~ Plexp(x] B + Zj)) Yij ~ Plexp(nj + Zj))
x; = all covariates no covariate

correlations between
inferred correlations X predictions: x[ 3;

species
species
15

s 10 15 20 25 0

species species
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A first illustration: Abiotic vs biotic interactions

species

Barents fishes: Full model

Xi

Poisson log-normal model

Yij ~ Plexp(x] B + Zj))

= all covariates

inferred correlations g

species

S. Robin

species

3 - Variational inference for species abundances and network models

correlations between
ietions: xT A3
predictions: x;' 3;

15

species

Illustration

Null model
Yij ~ Plexp(pj + Zyj))

no covariate

inferred correlations X,

5 10 15 2 25 20

species
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Extensions of the Poisson log-normal model

Outline

Extensions of the Poisson log-normal model
Dimension reduction
Network inference
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Extensions of the Poisson log-normal model Dimension reduction

Dimension reduction

Typical context.
> Microbial ecology: p = 102, 103, 10* species

» 'Abundance’ = 'read’ count = number of genomic sequences associated with each species
sampled via high-troughput sequencing ('metagenomic’)
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Extensions of the Poisson log-normal model Dimension reduction

Dimension reduction

Typical context.
> Microbial ecology: p = 102, 103, 10* species

» 'Abundance’ = 'read’ count = number of genomic sequences associated with each species
sampled via high-troughput sequencing ('metagenomic’)

Aim.
> Dimension reduction (visualization)

» Accounting for major known effects
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Extensions of the Poisson log-normal model Dimension reduction

Dimension reduction

Typical context.
> Microbial ecology: p = 102, 103, 10* species

» 'Abundance’ = 'read’ count = number of genomic sequences associated with each species
sampled via high-troughput sequencing ('metagenomic’)

Aim.

> Dimension reduction (visualization)

» Accounting for major known effects

Probabilistic principal component analysis. Gaussian setting [TB99]:

Y = BBT 4 o2, where B(p x r)

low rank
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Extensions of the Poisson log-normal model Dimension reduction

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]
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Extensions of the Poisson log-normal model ~ Dimension reduction

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]

» Low dimension latent vector

W; ~ N.(0, 1), where r < p
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Extensions of the Poisson log-normal model Dimension reduction

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]

» Low dimension latent vector

W; ~ N.(0, 1), where r < p

» p-dimensional latent vector

Z; = BW,; where B(p X r) = loading matrix
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Extensions of the Poisson log-normal model Dimension reduction

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]

» Low dimension latent vector

W; ~ N, (0, 1), where r < p

» p-dimensional latent vector

Z; = BW; where B(p x r) = loading matrix

» Observed counts
Yij ~ Plexp(oj + X7 8 + Zj))

0;; = known 'offset’ coefficient, accounting for the sampling effort
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Extensions of the Poisson log-normal model Dimension reduction

(PLN-)probabilistic PCA

PLN-PCA model. [CMR18]

» Low dimension latent vector

W; ~ N, (0, 1), where r < p

» p-dimensional latent vector

Z; = BW; where B(p x r) = loading matrix

» Observed counts
Yij ~ Plexp(oj + X7 8 + Zj))

0;; = known 'offset’ coefficient, accounting for the sampling effort

» Parameters

0 = (loading matrix B, regression coefficient 3) (+rank r)
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Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.

S. Robin 3 - Variational inference for species abundances and network models Luxembourg, Dec’20 12/36



Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.

> VE step: update the variational parameters mli."*'1 = IEq@,H(VV,-) and Sl.h'*'l = ]Eq@,“(VV,')

— Similar to the VE step of regular PLN
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Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.

> VE step: update the variational parameters mf’*l = ]Eq@,ﬂ(VV,-) and Sl.h+1 = ]Eq@,ﬂ(VV,')
— Similar to the VE step of regular PLN ’ '

» M step: update the model parameters Bt and gh+?
— no close form, but still convex problem (gradient descent)

Model selection.
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Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.
> VE step: update the variational parameters mf’*l = ]Eq@,ﬂ(VV,-) and Sl.h+1 = ]Eq@,ﬂ(VV,')
— Similar to the VE step of regular PLN ’ '

» M step: update the model parameters Bt and gh+?
— no close form, but still convex problem (gradient descent)

Model selection.
> BIC penalty [Sch78] (Laplace approximation): peng,c(0) = (p d + p r)logn/2
~ =~
B B
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Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.
> VE step: update the variational parameters mf’*l = ]Eq@,ﬂ(\/\/,-) and Sl.h+1 = ]Eq@,ﬂ(VV,')
— Similar to the VE step of regular PLN ’ '

» M step: update the model parameters Bt and gh+?
— no close form, but still convex problem (gradient descent)

Model selection.
> BIC penalty [Sch78] (Laplace approximation): peng,c(0) = (p d + p r)logn/2
~— =~
B B
» Heuristic adaptation (replace log pg(Y) with Jg 4(Y))

vBIC = Jy 4(Y) — pengc(0)
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Extensions of the Poisson log-normal model Dimension reduction

Variational inference for PLN-PCA

VEM algorithm.
> VE step: update the variational parameters mf’*l = ]Eq@,ﬂ(\/\/,-) and Sl.h+1 = ]Eq@,ﬂ(VV,')
— Similar to the VE step of regular PLN ’ '

» M step: update the model parameters Bt and gh+?
— no close form, but still convex problem (gradient descent)

Model selection.
> BIC penalty [Sch78] (Laplace approximation): peng,c(0) = (p d + p r)logn/2
~~
B B
» Heuristic adaptation (replace log pg(Y) with Jg 4(Y))
vBIC = Jg o(Y) — pengc(6)
> Inspired from [BCG00] (additional penalty for the conditional entropy the W;'s)

VICL = Jg o(Y) — penpc(0) — H(q) = Eqlog po (Y, Z) — pengc(0)
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Extensions of the Poisson log-normal model

Oak powdery mildew

Metabarcoding data [JFST16]

> p=114 OTUs
(66 bacteria and 48
fungi)

> n =116 leaves

» collected on 3 trees

P resistant
P intermediate
P susceptible

to oak powdery mildew;

> different protocole for
bacteria and fungi
0j; = sequencing depth

Dimension reduction
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Extensions of the Poisson log-normal model Dimension reduction
Oak powdery mildew

Offset (Mo) Offset and covariates (M)
Metabarcoding data [JFS'16]

> p=114 OTUs
(66 bacteria and 48
fungi)

axis 2 (15.7%)
axis 2 (13.93%)

> n =116 leaves

10

-0 0 0
axis 1(25.29%) axis 1 (15.86%)

tree - intermediate - resistant  susceptible

» collected on 3 trees

P resistant
P intermediate
P susceptible

to oak powdery mildew;

> different protocole for
bacteria and fungi
0j; = sequencing depth
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Extensions of the Poisson log-normal model Dimension reduction

Oak powdery mildew

Offset (Mo) Offset and covariates (M)
Metabarcoding data [JFST16]

> p=114 OTUs
(66 bacteria and 48
fungi)

axis 2 (15.7%)
axis 2 (13.93%)
°

L
3

> n =116 leaves s ! )
axis 1(25.29%)
tree - intermediate - resistant - susceptible

[
axis 1 (15.86%)

» collected on 3 trees

> different protocole for
bacteria and fungi
0j; = sequencing depth

P> resistant Offset (Mo) Offset and covariates (M)

P intermediate

P susceptible oo

¢ -50000
to oak powdery mildew; 2

7, -1o0000 ~75000 criterion
g g \g%lk
2 icl
8

_1s0000] | 100000

125000

-200000-
[

number of axes
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Extensions of the Poisson log-normal model Network inference

Network inference

Species interaction networks.

» Aim: Understand how species from a same
community interact

> Network representation = draw an edge between
interacting pairs of species
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Extensions of the Poisson log-normal model Network inference

Network inference

Species interaction networks.

» Aim: Understand how species from a same
community interact

predator

> Network representation = draw an edge between

interacting pairs of species

prey

» Main issue: Distinguish direct interactions

(predator-prey) from simple associations (two preys of

a same predator)

S. Robin 3 - Variational inference for species abundances and network models

predator

preyl prey2
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Extensions of the Poisson log-normal model Network inference
Network inference

Species interaction networks.

» Aim: Understand how species from a same
community interact

predator predator

> Network representation = draw an edge between
interacting pairs of species

prey preyl prey2

» Main issue: Distinguish direct interactions
(predator-prey) from simple associations (two preys of
a same predator)

— Obviously, analyses based on co-occurences or correlations are not sufficient [PWT*19]
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Extensions of the Poisson log-normal model Network inference
Network inference

Species interaction networks.

» Aim: Understand how species from a same
community interact

predator predator

> Network representation = draw an edge between
interacting pairs of species

prey preyl prey2

» Main issue: Distinguish direct interactions
(predator-prey) from simple associations (two preys of
a same predator)

— Obviously, analyses based on co-occurences or correlations are not sufficient [PWT*19]

Probabilistic translation.

association = marginal dependance

direct interaction = conditional dependance
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Extensions of the Poisson log-normal model Network inference

Undirected graphical models
Definition. p(Us, ... Uy) is faithful to the (chordal) graph G = ([k], E) iff

p(Us, ... Ug) x H e (Uc)

ceC

where C = {cliques of G} and Uc = (Y})jec-
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Extensions of the Poisson log-normal model Network inference

Undirected graphical models
Definition. p(Us, ... Uy) is faithful to the (chordal) graph G = ([k], E) iff

p(Ui, ... Uy) x H e (Uc)

ceC

where C = {cliques of G} and Uc = (Y})jec-

Property.
separation = conditional independance
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Extensions of the Poisson log-normal model Network inference

Undirected graphical models
Definition. p(Us, ... Uy) is faithful to the (chordal) graph G = ([k], E) iff

p(Ui, ... Uy) x H e (Uc)

cecC
where C = {cliques of G} and Uc = (Y})jec-
Property.
separation = conditional independance
Example.

() @
—w)

G = {17273}7 G = {374}
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Extensions of the Poisson log-normal model Network inference

Undirected graphical models
Definition. p(Us, ... Uy) is faithful to the (chordal) graph G = ([k], E) iff

p(Ui, ... Uy) x H e (Uc)

cecC
where C = {cliques of G} and Uc = (Y})jec-
Property.
separation = conditional independance
Example.
@ @ p(U1, Uz, Us, Us) ox 91 (Ur, Uz, Us) 42(Us, Us)

@‘@ > (U1, U, Uz, Us) all dependent

> Uy L Uz | (Us, Us)

| 2

G ={1,2,3},G = {3,4} g Zﬁ(ul;' 52) »
4 1, U2 3
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Extensions of the Poisson log-normal model Network inference

Gaussian graphical models
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Extensions of the Poisson log-normal model Network inference

Gaussian graphical models
Suppose Z ~ N(0,%) and denote by Q = [wjx] = £~ the precision matrix:

ojk = 0 & (Z;, Z) independent ('correlation’)

wjk = 0 & (Z;, Zx) independent | (Zp)pz),k ('partial correlation’)
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Extensions of the Poisson log-normal model Network inference

Gaussian graphical models
Suppose Z ~ N(0,%) and denote by Q = [wjx] = £~ the precision matrix:

ojk = 0 & (Z;, Z) independent ('correlation’)
wjk = 0 & (Z;, Zx) independent | (Zp)pz),k ('partial correlation’)

— 2 only refers to 'direct’ dependencies = G given by the support of Q2
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Extensions of the Poisson log-normal model Network inference

Gaussian graphical models
Suppose Z ~ N(0,%) and denote by Q = [wjx] = £~ the precision matrix:

ojk = 0 & (Z;, Z) independent ('correlation’)
wjk = 0 & (Z;, Zx) independent | (Zp)pz),k ('partial correlation’)

— 2 only refers to 'direct’ dependencies = G given by the support of Q2

Graphical lasso. [FHTO08]

» Common assumption: few species are in direct interaction

= Q should be sparse (many 0's)
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Extensions of the Poisson log-normal model Network inference

Gaussian graphical models
Suppose Z ~ N(0,%) and denote by Q = [wj] = £~! the precision matrix:

ojk = 0 & (Z;, Z) independent ('correlation’)
wjk = 0 & (Z;, Zx) independent | (Zp)pz),k ('partial correlation’)

— 2 only refers to 'direct’ dependencies = G given by the support of Q2

Graphical lasso. [FHTO08]

» Common assumption: few species are in direct interaction

= Q should be sparse (many 0's)

> Sparsity-inducing penalty (graphical lasso)

max log p(Z;Q2) — AZ Jewjic|
J#k
——
21 penalty
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Extensions of the Poisson log-normal model Network inference
Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

arg max  J(6,2,q9) — A w;,

gB,Q,qu (8 q) Z| k|
J#k
——
21 penalty

— Convex problem for both the VE and the M step
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Extensions of the Poisson log-normal model Network inference
Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

arg max  J(6,2,q9) — A w;,

gB,Q,qu (8 q) Z| k|
J#k
——
21 penalty

— Convex problem for both the VE and the M step

Inferring the /atent dependency structure, not the abundance one
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Extensions of the Poisson log-normal model Network inference
Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

arg max  J(6,2,q9) — A w;,

gB,Q,qu (8 q) Z| k|
J#k
——
21 penalty

— Convex problem for both the VE and the M step

Inferring the /atent dependency structure, not the abundance one

good case
il %)
@rea g ™)
@ @ )
W ®
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Extensions of the Poisson log-normal model Network inference
Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

arg max  J(6,2,q9) — A w;,

gB,Q,qu (8 q) Z| k|
J#k
——
21 penalty

— Convex problem for both the VE and the M step

Inferring the /atent dependency structure, not the abundance one

good case bad case
il %)
@rea g w | @ o B
% @\ LYo
W ®
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Extensions of the Poisson log-normal model Network inference
Poisson log-normal model for network inference

PLN-network. PLN model with graphical lasso penalty [CMR19]

arg max  J(6,2,q9) — A w;,

gB,Q,qu (8 q) Z| k|
J#k
——
21 penalty

— Convex problem for both the VE and the M step

Inferring the /atent dependency structure, not the abundance one

good case bad case

(2) ") 2]
@rea g w | @ o B
@@ @@@
® ®

— Similar setting for most approaches in statistical ecology [WBO" 15 KMM 15 FHZD17,PHW18]
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Extensions of the Poisson log-normal model Network inference

Barents' fish species

(a) no covariate

(b) temperature & depth

() all covariates

61 edges

-
x .
I
Data: ~< .
> n = 89 sites
108 edges
» p = 30 species
. &8
» d = 4 covariates N ¢
< .
> latitude
P longitude
P temperature
> depth 146 edges
b .
I
~

eRehi

S. Robin 3 - Variational inference for species abundances and network models

29 edges
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Extensions of the Poisson log-normal model Network inference

Barents' fish species: choosing A

value

Model selection criteria

8500

-9000
criterion
—~ BIC
—~ EBIC
— loglik

-9500 ~— pen_loglik

10000

10500
25 50 7510025

penalty

g

Alternatively.

Use resampling and select edges based
on selection frequency

[LRW10]
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Block-models  Illustration

Outline

Block-models
lllustration
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Block-models  Illustration

Stochastic block-model for ecological networks

Data:
> n species

> Y} = 'intensity’ (e.g. count) of the
link between species i and j

Adjacency matrix.

species
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Block-models  Illustration

Stochastic block-model for ecological networks

Data: Stochastic block-model.
P n species

> Y} = 'intensity’ (e.g. count) of the > K groups
link between species i and j

> Latent group membership

Zi ~ M(lv(ﬂ'lw . ~7TK))

Adjacency matrix.

» Observed count

Y,'j ~ P(exp(az,.,zj ))

species

> Parameters

0= (m, )

+K

©
species
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Block-models lllustration

Variational inference

Conditional distribution. @ @

» Group memberships:
Z,'JLZJ' but Z,‘.)f_Zj|Y;j

> pp(Z | Y) is intractable
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Block-models lllustration

Variational inference

Conditional distribution. @ @

» Group memberships:
Z,'JLZJ' but Z,‘.)f_Zj|Y;j

> po(Z | Y) is intractable

@

Variational approximation. Use a factorable approximate distribution

Q={q: q(2)= H qi(Zi), qi(Zi) = M(Zi;1,7:)}

no approximation

» Variational parameters: Tk ~Pr(Zi=k|Y)
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Block-models  Illustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]
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Block-models lllustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]
» VE step: update the variational parameters 7;
h+1 h rhi
Tik O<7Tk1—I]__[Poh(Yij | Zi=k,Z;=4£)"
J#i L
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Block-models lllustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]

» VE step: update the variational parameters 7;
h+1 h rhi
Tk ocﬂkHHpeh(Y,-j | Zi =k, Z; =1¢) it
J#i L

— Fix-point algorithm
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Block-models lllustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]

» VE step: update the variational parameters 7;
h+1 h rhi
Tk O(ﬂkHHpeh(Y,-j | Zi =k, Z; =1¢) it
J#i L

— Fix-point algorithm

> M step: update the model parameters 7, «

6"t = arg max Egni1 log po(Y, Z)
0
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Block-models lllustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]

» VE step: update the variational parameters 7;
b+l h rhi
Tik O(7rl<].—I].—I"9"(YU | Zi =k, Zj = 0))*
J#i L

— Fix-point algorithm

> M step: update the model parameters 7, «

6"t = arg max Egni1 log po(Y, Z)
0

— Close form for both 71 and af*!
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Block-models lllustration

Variational EM

Variational EM algorithm. blockmodels R package [Légl6]

» VE step: update the variational parameters 7;
h+1 _ _h rht
it ocmf [T pon(Yi | Zi = k2 =)
J#i €
— Fix-point algorithm
» M step: update the model parameters 7, «

6" = arg max Egni1 log po(Y, Z)
0

— Close form for both 7/t and afit1

Model selection. To choose the number of groups K: vBIC or vICL with penalty

pengc () = (K —1)

log n n K(K + 1) log(n(n— 1))
2 2 2

node memberships node links
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Block-models  Illustration

A first illustration: Tree species network

Simple model: No covariate

Yij ~ P(exp(azz))
Yij = number of shared fungal parasites
Kict =7

adjacency matrix Y clustered matrix

LTRIELE |

species
species

[ 1A |

W 50

»
species

0
species
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Block-models  Illustration

A first illustration: Tree species network

Simple model: No covariate

Yij ~ P(exp(azz))

Yij = number of shared fungal parasites

Kic =7

adjacency matrix Y

species

0
species

S. Robin

clustered matrix

LTRIELE |

species

[ 1A |

W

»
species

3 - Variational inference for species abundances and network models

'Validation’

comparison with the
phylogenetic classification

(conipherophyta vs
magnoliophyta)

1
O Conipherophyta
B Magnoliophyta

Group size and composition
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Outline

Extensions of block-models
Covariates
Dynamic SBM
Metagenomics

S. Robin
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Extensions of block-models  Covariates

Accounting for covariates

Adding a regression term.

» Information about similarity or dissimilarity between species is often available
— taxonomic, phylogenetic or geographic distance

> Obvious generalization of the stochastic block-model [MRV10]:
Yjj ~ P(exp(azz + ] 8))

— xjj = vector of covariates for the pair (/, )

» Parameters: 6 = (m,a, 8)
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Extensions of block-models  Covariates

Accounting for covariates

Adding a regression term.

» Information about similarity or dissimilarity between species is often available
— taxonomic, phylogenetic or geographic distance

> Obvious generalization of the stochastic block-model [MRV10]:
Yjj ~ P(exp(azz + ] 8))

— xjj = vector of covariates for the pair (/, )
> Parameters: 0 = (7, «, 3)
Variational EM algorithm. [MRV10]
» Very similar to SBM without covariates

> Estimation of 3 via weighted generalized linear model
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Extensions of block-models  Covariates

Tree species network

No covariate: Kjcp =7
Covariate:

Xjj = taxonomic distance

< 1]
a
. s+ &
Estimates: L
KicL = 4
B =-.317
species
12 N osii
0 Copense Group size and compostion
B Vagnoiophya
8
4
0
T n i T T T6 m
S. Robin
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Taxonomic dist.: R,CL =4

8-
=3
173
o
@
0 » m w 0
species
LR Tep— Group ize nd composiion
| Magnolophyta

™ i ™ T4
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Extensions of block-models

Tree species network
Covariate:

Xjj = taxonomic distance

Estimates:
KicL = 4

B=-317

> Taxonomy (partially)
explains the links (smaller K)

> Distant species share less
parasites (3 < 0)

» The remaining structure is
not related to taxonomy

S. Robin

Covariates

No covariate: Kjcp =7

L THE |

10 E 0 @ 50

species

12
0 Conipherophyta
B Vagnoiophya

Group size and composition

3 - Variational inference for species abundances and network models

Taxonomic dist.: Kjcp =4
LRET - | 1
N §: |H |
| '
.
B #- o L =
3 o
g =i

EY r 50

=
species

(Group size and composion

O Conipherophyta
| Magnolophyta
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Extensions of block-models ~ Dynamic SBM

Animal behavior

Data: [RSF'15]

> Consider n individuals (animals) along T times (days, weeks)

» At each time, observe

YUt = intensity of the social interaction between individuals i/ and j at time t
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Extensions of block-models ~ Dynamic SBM

Animal behavior

Data: [RSF'15]

> Consider n individuals (animals) along T times (days, weeks)

» At each time, observe

Y,

,-f = intensity of the social interaction between individuals i and j at time t

Questions:

» Do the individuals play different roles in the social network

» Do these roles change over time
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM

Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,Tl')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, Yut | Z;t,th ~ F(‘WZI!,ZJ!)
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM
Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,Tl')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, Yut | Z;t,th ~ F(';’YZI.‘,ZJ.‘)

@

®

@
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM
Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,ﬂ')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, Yut | Z;t,th ~ F(';'YZI.‘,Z].‘)
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM
Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,T(')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, Yut | Z;t,th ~ F(-;’YZI_:’Z/:)

@

®®\®
& ©®) @

@
@
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM
Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,T(')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, Yut | Z;t,th ~ F(-;’YZI_:’Z/:)
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Extensions of block-models ~ Dynamic SBM

Dynamic SBM
Dynamic stochastic block-model. [MM17]
> Assume that individuals belong to K clusters ('roles’)

> Denote by Z! the (latent) role of individual i at time t

» The successive roles of each individuals are independent Markov chains
Z,‘ = {Zit}lgtST ~ MC(Z/l,T(')
> Social interactions are conditionally independent

{Kf};7j7tindependent | {Z}}i e, YUt | Z;t,th ~ F('WZ,-‘,Z})
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Extensions of block-models ~ Dynamic SBM

Variational EM

Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states
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Extensions of block-models ~ Dynamic SBM

Variational EM
Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states
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Extensions of block-models ~ Dynamic SBM

Variational EM

Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states
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Extensions of block-models ~ Dynamic SBM

Variational EM

Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states

@ @ ®
@ @ @
@ @ @
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Extensions of block-models ~ Dynamic SBM

Variational EM

Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states

@ @ ®
@ @ @
@ @ @

Approximation classe. pg(Z | Y) ~ q(Z) = product of independent Markov chains (partial
factorization)

Q= {q toq(2)= Hqi(ZiL ai(Z) = ai(Z)) [ [ ai(Z' | Z,-tl)}

t>1
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Extensions of block-models ~ Dynamic SBM

Variational EM

Intractable EM. Denoting Z' = (Z{,...Z}), (Z'| Y)s>1 is a Markov chain ... with K" states

@ @ ®
@ @ @
@ @ @

Approximation classe. pg(Z | Y) ~ q(Z) = product of independent Markov chains (partial
factorization)

Q= {q toq(2)= HQi(ZiL ai(Z) = ai(Z)) [ [ ai(Z' | Z,-tl)}

t>1

VEM algorithm.

» VE step = running n forward-backward recursions

S. Robin 3 - Variational inference for species abundances and network models Luxembourg, Dec'20

30/36



Extensions of block-models Dynamic SBM

Onager social network

Data from [RSF'15]. n = 23 onagers, observations gathered into T = 4 time periods in [MM17].

» 4 groups (='roles’) are found, from isolated to highly central

» A fraction of individuals do change role from one period to another
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics

Comparative metagnomics.

> n samples (soil surrounding the root of a plant — rhizoshpere — with given genotype), p
bacterial species (Operational Taxonomy Units = OTUs),

» Yjj = number of reads from species j in sample i

ly ~ NegBin =S Y ~ P(AU) with U ~ Gamma.
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics

Comparative metagnomics.

> n samples (soil surrounding the root of a plant — rhizoshpere — with given genotype), p
bacterial species (Operational Taxonomy Units = OTUs),

» Yjj = number of reads from species j in sample i

> Question: Do preferential (or negative) associations exist between groups of genotypes and
groups of bacteria?

> Over-dispersion: Due to technological variability, counts are over-dispersed wrt Poisson
— Negative-binomial (= Poisson-Gammal) distribution for the count

ly ~ NegBin =S Y ~ P(AU) with U ~ Gamma.
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Extensions of block-models ~ Metagenomics

Latent block-model for comparative genomics
Model.

2The higher, the less dispersed.
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics
Model.

> {Zi}1<i<n sample memberships (among K groups) 7 = proportions of sample groups

Zi ~ M(1,7)

2The higher, the less dispersed.
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics
Model.

> {Zi}1<i<n sample memberships (among K groups) 7 = proportions of sample groups
Zj ~ M(1,m)
> {W;}1<j<p species memberships (among L groups) p = proportions of species groups

Wi ~ M(1, p)

2The higher, the less dispersed.
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics
Model.

> {Zi}1<i<n sample memberships (among K groups) 7 = proportions of sample groups
Zj ~ M(1,m)

> {W;}1<j<p species memberships (among L groups) p = proportions of species groups
Wi ~ M(1, p)

> {Ujti<i<n,1<j<p random effects 2 = overdispersion parameter?

Uj ~ Gamma(a, a)

2The higher, the less dispersed.

S. Robin 3 - Variational inference for species abundances and network models Luxembourg, Dec'20 33/36



Extensions of block-models Metagenomics

Latent block-model for comparative genomics

Model.

> {Zi}1<i<n sample memberships (among K groups) 7 = proportions of sample groups
Zj ~ M(1,m)
> {W;}1<j<p species memberships (among L groups) p = proportions of species groups
Wi ~ M(1, p)
> {Ujti<i<n,1<j<p random effects 2 = overdispersion parameter?
Uj ~ Gamma(a, a)
> {Yj}i<i<n1<j<p observed counts 1i; = mean (log-)abundance of species j
Yjj ~ P(exp(oi + pj + azw; + log Uj))

0jj = known sampling effort for species j in sample i

2The higher, the less dispersed.
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Extensions of block-models Metagenomics

Latent block-model for comparative genomics

Model.

> {Zi}1<i<n sample memberships (among K groups) 7 = proportions of sample groups
Zj ~ M(1,m)
> {W;}1<j<p species memberships (among L groups) p = proportions of species groups
Wi ~ M(1, p)
> {Ujti<i<n,1<j<p random effects 2 = overdispersion parameter?
Uj ~ Gamma(a, a)
> {Yj}i<i<n1<j<p observed counts 1i; = mean (log-)abundance of species j
Yjj ~ P(exp(oi + pj + azw; + log Uj))

0jj = known sampling effort for species j in sample i

Parameters.
9:(7"7@37047/1) +(K7L)

2The higher, the less dispersed.
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Extensions of block-models Metagenomics

Rhizoshpere clustering

Variational EM. Using

q(Z, W, U) = qz(Z) qw(W) qu(U)

Model selection with vICL including H(qz) and H(qw)

O(Z, W) inverted in the figure
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Extensions of block-models ~ Metagenomics

Rhizoshpere clustering

Variational EM. Using <
Model selection with vICL including H(qz) and H(qw) Bas I

w1 w2 w4

H

Results.
> K=4 sample groups, L = 10 bacteria groups

» Contrasted interactions: oy € [—.5,1.2]

> Sample groups display different biodiversity
(Shannon index)

O(Z, W) inverted in the figure
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To summarize

Outline

To summarize
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To summarize

To summarize

VEM for latent models.

> Latent variable models: flexible and explicit framework for modelling

» Variational approximation: efficient approach for their inference
— Mostly rely on the choice of the approximation class
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To summarize

To summarize

VEM for latent models.

> Latent variable models: flexible and explicit framework for modelling

» Variational approximation: efficient approach for their inference
— Mostly rely on the choice of the approximation class

Many other problems/models.

» Account for a spatial structure, fundamental niche vs realized niche, looking for some
structured in an inferred network, ...

S. Robin 3 - Variational inference for species abundances and network models Luxembourg, Dec'20 36/36



To summarize

To summarize

VEM for latent models.

> Latent variable models: flexible and explicit framework for modelling

» Variational approximation: efficient approach for their inference
— Mostly rely on the choice of the approximation class

Many other problems/models.

» Account for a spatial structure, fundamental niche vs realized niche, looking for some
structured in an inferred network, ...

Statistical guarantees.

» General properties of variational estimates?

» Combining VEM with other inference methods
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