2 - Statistical inference of incomplete data models

S. Robin
INRAE / AgroParisTech / univ. Paris-Saclay

Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

Outline

1 - Models with latent variables in ecology

2 - Variational inference for incomplete data models
(statistics)

3 - Variational inference for species abundances and network models (statistical ecology)

4- Beyond variational inference

Part 2

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

Outline

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

Models with latent variables

Notations.
Y observed variables (responses)
x observed covariates (explanatory)
Z latent (= unobserved, hidden, state) variables
θ unknown parameters

Models with latent variables

Notations.
Y observed variables (responses)
x observed covariates (explanatory)
Z latent (= unobserved, hidden, state) variables
θ unknown parameters
'Definition' of latent variables.

- Frequentist setting:

$$
\text { latent variables }=\text { random }, \quad \text { parameters }=\text { fixed }
$$

Models with latent variables

Notations.
Y observed variables (responses)
x observed covariates (explanatory)
Z latent (= unobserved, hidden, state) variables
θ unknown parameters
'Definition' of latent variables.

- Frequentist setting:

$$
\text { latent variables }=\text { random }, \quad \text { parameters }=\text { fixed }
$$

- Bayesian setting:
both latent variables and parameters = random
but

$$
\text { \# latent variables } \simeq \text { \# data, } \quad \text { \# parameters } \ll \text { \# data }
$$

Likelihoods

'Complete' likelihood: both latent and observed variables ${ }^{1}$:

$$
p_{\theta}(Y, Z)=p_{\theta}(Y, Z ; x)
$$

\rightarrow often reasonably easy to handle, but involves the unobserved Z

[^0]
Likelihoods

'Complete' likelihood: both latent and observed variables ${ }^{1}$:

$$
p_{\theta}(Y, Z)=p_{\theta}(Y, Z ; x)
$$

\rightarrow often reasonably easy to handle, but involves the unobserved Z
'Observed' likelihood $=$ marginal likelihood of the observed data ${ }^{2}$

$$
p_{\theta}(Y)=\int_{\mathcal{Z}} p_{\theta}(Y, z) \mathrm{d} z
$$

\rightarrow involves only the observed Y, but most often intractable

[^1]
Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Decomposition of the log-likelihood [DLR77]:

Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$
p_{\theta}(Z \mid Y)=p_{\theta}(Y, Z) / p_{\theta}(Y)
$$

Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$
p_{\theta}(Z \mid Y)=p_{\theta}(Y, Z) / p_{\theta}(Y)
$$

so (reverting the ratio and taking the log)

$$
\log p_{\theta}(Y)=\log p_{\theta}(Y, Z)-\log p_{\theta}(Z \mid Y)
$$

Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$
p_{\theta}(Z \mid Y)=p_{\theta}(Y, Z) / p_{\theta}(Y)
$$

so (reverting the ratio and taking the log)

$$
\log p_{\theta}(Y)=\log p_{\theta}(Y, Z)-\log p_{\theta}(Z \mid Y)
$$

and (taking the conditional expectation on both side)

$$
\mathbb{E}_{\theta}\left[\log p_{\theta}(Y) \mid Y\right]=\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta}\left[\log p_{\theta}(Z \mid Y) \mid Y\right]
$$

Maximum likelihood

Maximum likelihood estimate (MLE):

$$
\theta_{M L E}=\underset{\theta}{\arg \max } p_{\theta}(Y)=\underset{\theta}{\arg \max } \int p_{\theta}(Y, z) \mathrm{d} z
$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$
p_{\theta}(Z \mid Y)=p_{\theta}(Y, Z) / p_{\theta}(Y)
$$

so (reverting the ratio and taking the log)

$$
\log p_{\theta}(Y)=\log p_{\theta}(Y, Z)-\log p_{\theta}(Z \mid Y)
$$

and (taking the conditional expectation on both side)

$$
\mathbb{E}_{\theta}\left[\log p_{\theta}(Y) \mid Y\right]=\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta}\left[\log p_{\theta}(Z \mid Y) \mid Y\right]
$$

that is

$$
\log p_{\theta}(Y)=\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta}\left[\log p_{\theta}(Z \mid Y) \mid Y\right]
$$

Decomposition of $\log p_{\theta}(Y)$

$$
\begin{aligned}
\log p_{\theta}(Y) & =\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] \\
\log p_{\theta}(Y) & =\text { (observed) log-likelihood }=\text { objective function } \\
\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right] & =\text { conditional expectation of the 'complete' log-likelihood } \\
-\mathbb{E}_{\theta}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] & =\text { conditional entropy }=\mathcal{H}\left(p_{\theta}(Z \mid Y)\right)
\end{aligned}
$$

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting θ^{h} the estimate at step h, repeat until convergence

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

which requires to (sub-)steps:

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting θ^{h} the estimate at step h, repeat until convergence

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

which requires to (sub-)steps:
Expectation step $=$ computation of all moments needed to evaluate $\mathbb{E}_{\theta^{h}}[\cdot \mid Y]$

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting θ^{h} the estimate at step h, repeat until convergence

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

which requires to (sub-)steps:
Expectation step $=$ computation of all moments needed to evaluate $\mathbb{E}_{\theta^{h}}[\cdot \mid Y]$

Maximization step $=$ update the estimate as $\arg \max _{\theta}$

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting θ^{h} the estimate at step h, repeat until convergence

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

which requires to (sub-)steps:

Expectation step $=$ computation of all moments needed to evaluate $\mathbb{E}_{\theta^{h}}[\cdot \mid Y]$

Maximization step $=$ update the estimate as arg $\max _{\theta}$

Main property:

$$
\log p_{\theta^{h+1}}(Y) \geq \log p_{\theta^{h}}(Y)
$$

\rightarrow Proof in \#32.

Expectation-maximization (EM) algorithm (2/2)

$$
\theta^{h+1}=\underbrace{\arg \max }_{M \text { step }} \underbrace{\mathbb{E}_{\theta^{h}}}_{\text {E step }}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

Some remarks.

Expectation-maximization (EM) algorithm (2/2)

$$
\theta^{h+1}=\underbrace{\arg \max }_{M \text { step }} \underbrace{\mathbb{E}_{\theta^{h}}}_{\text {E step }}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

Some remarks.

1. θ occurs twice in the formula

Expectation-maximization (EM) algorithm (2/2)

$$
\theta^{h+1}=\underbrace{\arg \max }_{M \text { step }} \underbrace{\mathbb{E}_{\theta^{h}}}_{\text {E step }}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

Some remarks.

1. θ occurs twice in the formula
2. Relies on the 'complete' (= joint): easier to handle

Expectation-maximization (EM) algorithm (2/2)

$$
\theta^{h+1}=\underbrace{\arg \max }_{M \text { step }} \underbrace{\mathbb{E}_{\theta^{h}}}_{\text {E step }}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

Some remarks.

1. θ occurs twice in the formula
2. Relies on the 'complete' (= joint): easier to handle
3. The objective function $\log p_{\theta}(Y)$ is never evaluated

Expectation-maximization (EM) algorithm (2/2)

$$
\theta^{h+1}=\underbrace{\arg \max }_{M \text { step }} \underbrace{\mathbb{E}_{\theta^{h}}}_{E \text { step }}\left[\log p_{\theta}(Y, Z) \mid Y\right]
$$

Some remarks.

1. θ occurs twice in the formula
2. Relies on the 'complete' (= joint): easier to handle
3. The objective function $\log p_{\theta}(Y)$ is never evaluated
4. Actually, no need to maximize wrt θ :

$$
\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \geq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]
$$

suffices ('generalized' $\mathrm{EM}=\mathrm{GEM}$)

M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

[^2]
M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family ${ }^{3}$

$$
\log p_{\theta}(Y, Z)=t(Y, Z)^{\top} \theta-a(Y, Z)-b(\theta)
$$

then

$$
\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]=\mathbb{E}_{\theta}[t(Y, Z) \mid Y]^{\top} \theta-\mathbb{E}_{\theta}[a(Y, Z) \mid Y]-b(\theta)
$$

[^3]
M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family ${ }^{3}$

$$
\log p_{\theta}(Y, Z)=t(Y, Z)^{\top} \theta-a(Y, Z)-b(\theta)
$$

then

$$
\mathbb{E}_{\theta}\left[\log p_{\theta}(Y, Z) \mid Y\right]=\mathbb{E}_{\theta}[t(Y, Z) \mid Y]^{\top} \theta-\mathbb{E}_{\theta}[a(Y, Z) \mid Y]-b(\theta)
$$

- Usual MLE for θ
- Provided that $\mathbb{E}_{\theta}[t(Y, Z) \mid Y]$ and $\mathbb{E}_{\theta}[a(Y, Z) \mid Y]$ can be evaluated

[^4]
E step

Critical step: requires to compute some moments of

$$
p_{\theta}(Z \mid Y)=\frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}
$$

Three situations.

E step

Critical step: requires to compute some moments of

$$
p_{\theta}(Z \mid Y)=\frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}
$$

Three situations.

- Easy cases: explicit E step \rightarrow mixture models (Bayes formula), simple mixed models (close form conditional)

E step

Critical step: requires to compute some moments of

$$
p_{\theta}(Z \mid Y)=\frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}
$$

Three situations.

- Easy cases: explicit E step \rightarrow mixture models (Bayes formula), simple mixed models (close form conditional)
- Tricky cases: non-explicit, but still exact E step, ... \rightarrow hidden Markov models (forward-backward recursions), evolutionary models (upward-downward), belief propagation on trees...

E step

Critical step: requires to compute some moments of

$$
p_{\theta}(Z \mid Y)=\frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}
$$

Three situations.

- Easy cases: explicit E step \rightarrow mixture models (Bayes formula), simple mixed models (close form conditional)
- Tricky cases: non-explicit, but still exact E step, ... \rightarrow hidden Markov models (forward-backward recursions), evolutionary models (upward-downward), belief propagation on trees...
- Bad cases: no exact evaluation \rightarrow either sample from $p_{\theta}(Z \mid Y)$ (Monte-Carlo)
\rightarrow or approximate $q(Z) \simeq p_{\theta}(Z \mid Y)$ (variational approximations)

Poisson log-normal model

Univariate case. ($p=1$ species)

- $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- $Y \sim \mathcal{P}\left(e^{\mu+Z}\right)$
$\rightarrow Z$ is marginally Gaussian (- -)

Poisson log-normal model

Univariate case. ($p=1$ species)

- $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- $Y \sim \mathcal{P}\left(e^{\mu+Z}\right)$
$\rightarrow Z$ is marginally Gaussian (- -)

Conditional distribution.
$p(z \mid Y=y) \propto \exp \left(-\frac{z^{2}}{2 \sigma^{2}}-e^{\mu+z}+y(\mu+z)\right)$
\rightarrow no close form
$\rightarrow Z$ is not conditionaly Gaussian (-vs ...)

$$
\mu=1, \quad \sigma=2
$$

Stochastic block-model

Poisson model. (no covariate)
$>\left\{Z_{i}\right\}$ iid $\sim \mathcal{M}(1, \pi)$
$-Y_{i j} \sim \mathcal{P}\left(e^{\alpha} Z_{i} z_{j}\right)$
\rightarrow The Z_{i} are marginally independent

Stochastic block-model

Poisson model. (no covariate)

- $\left\{Z_{i}\right\}$ iid $\sim \mathcal{M}(1, \pi)$
$-Y_{i j} \sim \mathcal{P}\left(e^{\alpha z_{i} z_{j}}\right)$

Directed graphical model

Stochastic block-model

Poisson model. (no covariate)

- $\left\{Z_{i}\right\}$ iid $\sim \mathcal{M}(1, \pi)$
$-Y_{i j} \sim \mathcal{P}\left(e^{\alpha Z_{i} z_{j}}\right)$

$$
\text { Moralization of }\left(Z_{1}, Z_{i}\right)
$$

\rightarrow The Z_{i} are marginally independent

Moralization. [Lau96]

$$
p\left(Z_{i}, Z_{j} \mid Y_{i j}\right)=\frac{p\left(Z_{i}\right) p\left(Z_{j}\right) p\left(Y_{i j} \mid Z_{i}, Z_{j}\right)}{p\left(Y_{i j}\right)}
$$

does not factorize in $\left(Z_{i}, Z_{j}\right)$.

Stochastic block-model

Poisson model. (no covariate)

- $\left\{Z_{i}\right\}$ iid $\sim \mathcal{M}(1, \pi)$
$-Y_{i j} \sim \mathcal{P}\left(e^{\alpha z_{i} z_{j}}\right)$
\rightarrow The Z_{i} are marginally independent

Moralization. [Lau96]

$$
p\left(Z_{i}, Z_{j} \mid Y_{i j}\right)=\frac{p\left(Z_{i}\right) p\left(Z_{j}\right) p\left(Y_{i j} \mid Z_{i}, Z_{j}\right)}{p\left(Y_{i j}\right)}
$$

Moralization for all pairs

does not factorize in $\left(Z_{i}, Z_{j}\right)$.

Stochastic block-model

Poisson model. (no covariate)

- $\left\{Z_{i}\right\}$ iid $\sim \mathcal{M}(1, \pi)$
$-Y_{i j} \sim \mathcal{P}\left(e^{\alpha z_{i} z_{j}}\right)$
\rightarrow The Z_{i} are marginally independent

Moralization. [Lau96]

$$
p\left(Z_{i}, Z_{j} \mid Y_{i j}\right)=\frac{p\left(Z_{i}\right) p\left(Z_{j}\right) p\left(Y_{i j} \mid Z_{i}, Z_{j}\right)}{p\left(Y_{i j}\right)}
$$

Conditional graphical model

does not factorize in $\left(Z_{i}, Z_{j}\right)$.
\rightarrow The Z_{i} are all conditionally dependent

Outline

Incomplete data models

Variational EM

```
Variational Bayes EM
```

```
Variational inference
```


General aim

Problem. $p_{\theta}(Z \mid Y)$ being intractable, we look for a 'good' approximation of it:

$$
q(Z) \approx p_{\theta}(Z \mid Y)
$$

More specifically, given

General aim

Problem. $p_{\theta}(Z \mid Y)$ being intractable, we look for a 'good' approximation of it:

$$
q(Z) \approx p_{\theta}(Z \mid Y)
$$

More specifically, given

- a set of approximating distributions \mathcal{Q} and

General aim

Problem. $p_{\theta}(Z \mid Y)$ being intractable, we look for a 'good' approximation of it:

$$
q(Z) \approx p_{\theta}(Z \mid Y)
$$

More specifically, given

- a set of approximating distributions \mathcal{Q} and
- a divergence measure $D[q \| p]$,

General aim

Problem. $p_{\theta}(Z \mid Y)$ being intractable, we look for a 'good' approximation of it:

$$
q(Z) \approx p_{\theta}(Z \mid Y)
$$

More specifically, given

- a set of approximating distributions \mathcal{Q} and
- a divergence measure $D[q \| p]$,
we look for

$$
q^{*}=\underset{q \in \mathcal{Q}}{\arg \min } D\left[q(Z) \| p_{\theta}(Z \mid Y)\right]
$$

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

Choice of the divergence measure.

- Most popular choice $=$ Küllback-Leibler:

$$
D[q \| p]=K L[q \| p]=\mathbb{E}_{q} \log (q / p)
$$

\rightarrow the error $\log (q / p)$ is averaged wrt the approximation q itself

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

Choice of the divergence measure.

- Most popular choice $=$ Küllback-Leibler:

$$
D[q \| p]=K L[q \| p]=\mathbb{E}_{q} \log (q / p)
$$

\rightarrow the error $\log (q / p)$ is averaged wrt the approximation q itself

- Expectation propagation (EP, [Min01]): $D[q \| p]=K L[p \| q]$
\rightarrow more sensible, but requires integration wrt p

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

Choice of the divergence measure.

- Most popular choice $=$ Küllback-Leibler:

$$
D[q \| p]=K L[q \| p]=\mathbb{E}_{q} \log (q / p)
$$

\rightarrow the error $\log (q / p)$ is averaged wrt the approximation q itself

- Expectation propagation (EP, [Min01]): $D[q \| p]=K L[p \| q]$ \rightarrow more sensible, but requires integration wrt p
- Many others (see e.g. [Min05])

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('VE') step

[^5]S. Robin

2 - Statistical inference of incomplete data models

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('VE') step
'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$
J_{\theta, q}(Y)=\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right]
$$

[^6]
Variational EM algorithm

In a nutshell: replace the E step with an approximation ('VE') step
'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$
J_{\theta, q}(Y)=\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right]
$$

VEM algorithm.

VE step: maximize $J_{\theta, q}(Y)$ wrt q

M step: maximize $J_{\theta, q}(Y)$ wrt θ

[^7]
Variational EM algorithm

In a nutshell: replace the E step with an approximation ('VE') step
'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$
J_{\theta, q}(Y)=\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right]
$$

VEM algorithm.

VE step: maximize $J_{\theta, q}(Y)$ wrt q

M step: maximize $J_{\theta, q}(Y)$ wrt θ

Property: $J_{\theta, q}(Y)$ increases at each step.

[^8]
Variational EM algorithm

The ELBO can written in two ways:

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \\
& =\mathbb{E}_{q} \log p_{\theta}(Y, Z)-\mathbb{E}_{q} \log q(Z)
\end{aligned}
$$

\rightarrow See \#33

Variational EM algorithm

The ELBO can written in two ways:

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \\
& =\mathbb{E}_{q} \log p_{\theta}(Y, Z)-\mathbb{E}_{q} \log q(Z)
\end{aligned}
$$

\rightarrow See \#33

VEM algorithm.

- VE step (approximation):

$$
q^{h+1}=\underset{q \in \mathcal{Q}}{\arg \min } K L\left[q(Z) \| p_{\theta^{h}}(Z \mid Y)\right]
$$

- M step (parameter update):

$$
\theta^{h+1}=\underset{\theta}{\arg \max } \mathbb{E}_{q^{h+1}} \log p_{\theta}(Y, Z)
$$

EM as a VEM algorithm

We have that

$$
\begin{align*}
\log p_{\theta}(Y) & =\mathbb{E}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] \tag{EM}\\
J_{\theta, q}(Y) & =\mathbb{E}_{q}\left[\log p_{\theta}(Y, Z)\right]-\mathbb{E}_{q}[\log q(Z)] \tag{VEM}
\end{align*}
$$

EM as a VEM algorithm

We have that

$$
\begin{align*}
\log p_{\theta}(Y) & =\mathbb{E}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] \tag{EM}\\
J_{\theta, q}(Y) & =\mathbb{E}_{q}\left[\log p_{\theta}(Y, Z)\right]-\mathbb{E}_{q}[\log q(Z)] \tag{VEM}
\end{align*}
$$

- Both are the same iff $q(Z)=p_{\theta}(Z \mid Y)$

$$
\text { (as } \left.K L\left[q^{h+1}(Z) \| p_{\theta^{h}}(Z \mid Y)\right]=0\right)
$$

EM as a VEM algorithm

We have that

$$
\begin{align*}
\log p_{\theta}(Y) & =\mathbb{E}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] \tag{EM}\\
J_{\theta, q}(Y) & =\mathbb{E}_{q}\left[\log p_{\theta}(Y, Z)\right]-\mathbb{E}_{q}[\log q(Z)] \tag{VEM}
\end{align*}
$$

- Both are the same iff $q(Z)=p_{\theta}(Z \mid Y) \quad\left(\right.$ as $\left.K L\left[q^{h+1}(Z) \| p_{\theta^{h}}(Z \mid Y)\right]=0\right)$
- This happens when \mathcal{Q} is unrestricted, that is

$$
q^{h+1}(Z)=\underset{q}{\arg \min } K L\left[q(Z) \| p_{\theta^{h}}(Z \mid Y)\right]=p_{\theta^{h}}(Z \mid Y)
$$

EM as a VEM algorithm

We have that

$$
\begin{align*}
\log p_{\theta}(Y) & =\mathbb{E}\left[\log p_{\theta}(Y, Z) \mid Y\right]-\mathbb{E}\left[\log p_{\theta}(Z \mid Y) \mid Y\right] \tag{EM}\\
J_{\theta, q}(Y) & =\mathbb{E}_{q}\left[\log p_{\theta}(Y, Z)\right]-\mathbb{E}_{q}[\log q(Z)] \tag{VEM}
\end{align*}
$$

- Both are the same iff $q(Z)=p_{\theta}(Z \mid Y) \quad\left(\right.$ as $\left.K L\left[q^{h+1}(Z) \| p_{\theta^{h}}(Z \mid Y)\right]=0\right)$
- This happens when \mathcal{Q} is unrestricted, that is

$$
q^{h+1}(Z)=\underset{q}{\arg \min } K L\left[q(Z) \| p_{\theta^{h}}(Z \mid Y)\right]=p_{\theta^{h}}(Z \mid Y)
$$

- This provides us with a second proof of EM's main property

'Mean-field' approximations

'Mean-field' approximations

Choice of the approximation class. A popular choice is

$$
\mathcal{Q}_{\text {fact }}=\{\text { factorable distributions }\}=\left\{q: q(Z)=\prod_{i} q_{i}\left(Z_{i}\right)\right\}
$$

'Mean-field' approximations

Choice of the approximation class. A popular choice is

$$
\mathcal{Q}_{\text {fact }}=\{\text { factorable distributions }\}=\left\{q: q(Z)=\prod_{i} q_{i}\left(Z_{i}\right)\right\}
$$

Property. For a given distribution $p(Z)$,

$$
q^{*}=\underset{q \in \mathcal{Q}_{\text {fact }}}{\arg \min } K L[q \| p]
$$

satisfies

$$
q_{i}^{*}\left(Z_{i}\right) \propto \exp \left(\mathbb{E}_{\otimes_{j \neq i} q_{j}^{*}} \log p(Z)\right)
$$

\rightarrow Proof in [Bea03] (sketch in \#34)

'Mean-field' approximations

Choice of the approximation class. A popular choice is

$$
\mathcal{Q}_{\mathrm{fact}}=\{\text { factorable distributions }\}=\left\{q: q(Z)=\prod_{i} q_{i}\left(Z_{i}\right)\right\}
$$

Property. For a given distribution $p(Z)$,

$$
q^{*}=\underset{q \in \mathcal{Q}_{\text {fact }}}{\arg \min } K L[q \| p]
$$

satisfies

$$
q_{i}^{*}\left(Z_{i}\right) \propto \exp \left(\mathbb{E}_{\otimes_{j \neq i} q_{j}^{*}} \log p(Z)\right)
$$

\rightarrow Proof in [Bea03] (sketch in \#34)

- $\log q_{i}^{*}\left(Z_{i}\right)$ is obtained by setting the $\left\{Z_{j}\right\}_{j \neq i}$ 'to their respective mean' (each wrt to q_{j}^{*}).

Outline

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

Bayesian inference

Bayesian setting: The parameters in θ are random
(no latent variable yet)

Bayesian inference

Bayesian setting: The parameters in θ are random
(no latent variable yet)

- 'Prior' = marginal distribution of the parameter

$$
p(\theta)
$$

Bayesian inference

Bayesian setting: The parameters in θ are random
(no latent variable yet)

- 'Prior' = marginal distribution of the parameter

$$
p(\theta)
$$

- 'Likelihood' = conditional distribution of the observations

$$
p(Y \mid \theta)
$$

Bayesian inference

Bayesian setting: The parameters in θ are random
(no latent variable yet)

- 'Prior' = marginal distribution of the parameter

$$
p(\theta)
$$

- 'Likelihood' = conditional distribution of the observations

$$
p(Y \mid \theta)
$$

- 'Posterior' = conditional distribution of the parameters given the data

$$
p(\theta \mid Y)=\frac{p(\theta) p(Y \mid \theta)}{\int p(\theta) p(Y \mid \theta) \mathrm{d} \theta}
$$

Variational Bayes

Ideal case: Explicit posterior \rightarrow Conjugate priors

Variational Bayes

Ideal case: Explicit posterior \rightarrow Conjugate priors

Most of the time: No explicit form for $p(\theta \mid Y)$

Variational Bayes

Ideal case: Explicit posterior \rightarrow Conjugate priors

Most of the time: No explicit form for $p(\theta \mid Y)$

- Sample from it, i.e. try to get

$$
\left\{\theta^{b}\right\}_{1 \leq b \leq B} \stackrel{\text { iid }}{\approx} p(\theta \mid Y)
$$

\rightarrow Monte-Carlo (MC), MCMC, SMC, HMC, ...

Variational Bayes

Ideal case: Explicit posterior \rightarrow Conjugate priors

Most of the time: No explicit form for $p(\theta \mid Y)$

- Sample from it, i.e. try to get

$$
\left\{\theta^{b}\right\}_{1 \leq b \leq B} \stackrel{\text { iid }}{\approx} p(\theta \mid Y)
$$

\rightarrow Monte-Carlo (MC), MCMC, SMC, HMC, ...

- Approximate it, i.e. look for

$$
q(\theta) \simeq p(\theta \mid Y)
$$

\rightarrow Variational Bayes (VB) [Att00]

Variational Bayes

Ideal case: Explicit posterior \rightarrow Conjugate priors

Most of the time: No explicit form for $p(\theta \mid Y)$

- Sample from it, i.e. try to get

$$
\left\{\theta^{b}\right\}_{1 \leq b \leq B} \stackrel{\text { iid }}{\approx} p(\theta \mid Y)
$$

\rightarrow Monte-Carlo (MC), MCMC, SMC, HMC, ...

- Approximate it, i.e. look for

$$
q(\theta) \simeq p(\theta \mid Y)
$$

\rightarrow Variational Bayes (VB) [Att00]

Example. Consider $\mathcal{N}=\{$ Gaussian distributions $\}$

$$
q^{*}(\theta)=\underset{q \in \mathcal{N}}{\arg \min } K L[q(\theta) \mid p(\theta \mid Y)]
$$

(or $K L[p(\theta \mid Y) \mid q(\theta)]$)

Including latent variables

Bayesian model with latent variables.

$$
\begin{aligned}
\theta & \sim p(\theta) \\
Z & \sim p(Z \mid \theta) \\
Y & \sim p(Y \mid \theta, Z)
\end{aligned}
$$

prior distribution
latent variables
observed variables

Including latent variables

Bayesian model with latent variables.

$$
\begin{aligned}
\theta & \sim p(\theta) \\
Z & \sim p(Z \mid \theta) \\
Y & \sim p(Y \mid \theta, Z)
\end{aligned}
$$

prior distribution
latent variables
observed variables

Aim of Bayesian inference. Determine the joint conditional distribution

$$
p(\theta, Z \mid Y)=\frac{p(\theta) p(Z \mid \theta) p(Y \mid \theta, Z)}{p(Y)}
$$

where

$$
p(Y)=\iint p(\theta) p(Z \mid \theta) p(Y \mid \theta, Z) \mathrm{d} \theta \mathrm{~d} Z
$$

is most often intractable

Variational Bayes EM

Variational approximation of the joint conditional $p(\theta, Z \mid Y)$

$$
q(\theta, Z)=\underset{q \in \mathcal{Q}}{\arg \min } K L[q(\theta, Z) \| p(\theta, Z \mid Y)]
$$

taking $\mathcal{Q}=\mathcal{Q}_{\text {fact }}=\left\{\boldsymbol{q}: q(\theta, Z)=\boldsymbol{q}_{\theta}(\theta) q_{Z}(Z)\right\}[$ Bea03,BG03]

Variational Bayes EM

Variational approximation of the joint conditional $p(\theta, Z \mid Y)$

$$
q(\theta, Z)=\underset{q \in \mathcal{Q}}{\arg \min } K L[q(\theta, Z) \| p(\theta, Z \mid Y)]
$$

taking $\mathcal{Q}=\mathcal{Q}_{\text {fact }}=\left\{\boldsymbol{q}: q(\theta, Z)=\boldsymbol{q}_{\theta}(\theta) q_{Z}(Z)\right\}[$ Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

Variational Bayes EM

Variational approximation of the joint conditional $p(\theta, Z \mid Y)$

$$
q(\theta, Z)=\underset{q \in \mathcal{Q}}{\arg \min } K L[q(\theta, Z) \| p(\theta, Z \mid Y)]
$$

taking $\mathcal{Q}=\mathcal{Q}_{\text {fact }}=\left\{\boldsymbol{q}: q(\theta, Z)=\boldsymbol{q}_{\theta}(\theta) q_{Z}(Z)\right\}[$ Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

- VBE step $=$ update of the latent variable distribution

$$
q_{Z}^{h+1}(Z) \propto \exp \left(\mathbb{E}_{q_{\theta}^{h}} \log p(Y, Z, \theta)\right)
$$

Variational Bayes EM

Variational approximation of the joint conditional $p(\theta, Z \mid Y)$

$$
q(\theta, Z)=\underset{q \in \mathcal{Q}}{\arg \min } K L[q(\theta, Z) \| p(\theta, Z \mid Y)]
$$

taking $\mathcal{Q}=\mathcal{Q}_{\text {fact }}=\left\{q: q(\theta, Z)=q_{\theta}(\theta) q_{Z}(Z)\right\}[$ Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

- VBE step $=$ update of the latent variable distribution

$$
q_{Z}^{h+1}(Z) \propto \exp \left(\mathbb{E}_{q_{\theta}^{h}} \log p(Y, Z, \theta)\right)
$$

- VBM step $=$ update of the parameter distribution

$$
q_{\theta}^{h+1}(\theta) \propto \exp \left(\mathbb{E}_{q_{Z}^{h+1}} \log p(Y, Z, \theta)\right)
$$

VBEM in practice

Exponential family / conjugate prior. If
$p(Y, Z \mid \theta)$ belongs to the exponential family
and $p(\theta)$ is the corresponding conjugate prior
then both the VBE and VBM steps are completely explicit [BG03]

VBEM in practice

Exponential family / conjugate prior. If
$p(Y, Z \mid \theta)$ belongs to the exponential family
and $p(\theta)$ is the corresponding conjugate prior
then both the VBE and VBM steps are completely explicit [BG03]

Many VBEM's.

\rightarrow Force further factorization among the Z (see e.g. [LBA12,GDR12,KBCG15] for block-models)

- Use further approximations when conjugacy does not hold [JJ00]

Outline

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

Variational inference

Variational approximations for conditional distributions $p_{\theta}(Z \mid Y)$ or $p(\theta, Z \mid Y)$
\rightarrow computationally efficient alternative to Monte-Carlo methods

Variational inference

Variational approximations for conditional distributions $p_{\theta}(Z \mid Y)$ or $p(\theta, Z \mid Y)$
\rightarrow computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms
\rightarrow reasonably easy to implement

Variational inference

Variational approximations for conditional distributions $p_{\theta}(Z \mid Y)$ or $p(\theta, Z \mid Y)$
\rightarrow computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms
\rightarrow reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models
\rightarrow see Part 3 for applications in statistical ecology

Variational inference

Variational approximations for conditional distributions $p_{\theta}(Z \mid Y)$ or $p(\theta, Z \mid Y)$
\rightarrow computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms
\rightarrow reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models
\rightarrow see Part 3 for applications in statistical ecology

Statistical guarantees still need to be established for the resulting estimates
\rightarrow see Part 4

References I

Atias．A variational Bayesian framework for graphical models．In Advances in neural information processing systems，pages 209－215， 2000.
軘 Beal．Variational algorithms for approximate Bayesian inference．PhD thesis，university of London， 2003.
J
，M．and Z．Ghahramani．The variational Bayesian EM algorithm for incomplete data：with application to scoring graphical model structures． Bayesian Statistics，7：543－52， 2003.

Blei，A．Kucukelbir，and J．D．McAuliffe．Variational inference：A review for statisticians．Journal of the American Statistical Association， 112（518）：859－877， 2017.

Dempster，N．M．Laird，and D．B．Rubin．Maximum likelihood from incomplete data via the EM algorithm．Journal of the Royal Statistical Society： Series B，39：1－38， 1977.
zal，J．－J．Daudin，and S．Robin．Accuracy of variational estimates for random graph mixture models．Journal of Statistical Computation and Simulation，82（6）：849－862， 2012.

Jaakkola and M．I．Jordan．Bayesian parameter estimation via variational methods．Statistics and Computing，10（1）：25－37， 2000.
ribin，V．Brault，G．Celeux，and G．Govaert．Estimation and selection for the latent block model on categorical data．Statistics and Computing， 25（6）：1201－1216， 2015.

Lauritzen．Graphical Models．Oxford Statistical Science Series．Clarendon Press， 1996.

touche，E．Birmelé，and C．Ambroise．Variational Bayesian inference and complexity control for stochastic block models．Statis．Model．，12（1）：93－115， 2012.

Minka．Expectation propagation for approximate Bayesian inference．In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence，pages 362－369．Morgan Kaufmann Publishers Inc．， 2001.

Minka．Divergence measures and message passing．Technical Report MSR－TR－2005－173，Microsoft Research Ltd， 2005.

References II

Murphy, Y. Weiss, and M. I Jordan. Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 467-475. Morgan Kaufmann Publishers Inc., 1999.

ME. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1-305, 2008.

空
Yedidia, W. T Freeman, and Y. Weiss. Bethe free energy, kikuchi approximations, and belief propagation algorithms. Advances in neural information processing systems, 13, 2001.

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
0 \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right]
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{aligned}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]
\end{aligned}
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{aligned}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right] \quad \leq \log \left(\mathbb{E}_{\theta^{h}}\left[\left.\frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]\right)
\end{aligned}
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{aligned}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right] \quad \leq \log \left(\mathbb{E}_{\theta^{h}}\left[\left.\frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]\right) \\
& =\log \int \frac{p_{\theta^{h}}(Y, Z)}{p_{\theta^{h}}(Y)} \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \mathrm{d} Z
\end{aligned}
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{align*}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right] \quad \leq \log \left(\mathbb{E}_{\theta^{h}}\left[\left.\frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]\right) \quad \text { (Jens } \tag{Jensen}\\
& =\log \int \frac{p_{\theta^{h}}(Y, Z)}{p_{\theta^{h}}(Y)} \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \mathrm{d} Z \quad=\log \left(\frac{1}{p_{\theta^{h}}(Y)} \int p_{\theta^{h+1}}(Y, Z) \mathrm{d} Z\right)
\end{align*}
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{aligned}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right] \quad \leq \log \left(\mathbb{E}_{\theta^{h}}\left[\left.\frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]\right) \quad \text { (Jens } \\
& =\log \int \frac{p_{\theta^{h}}(Y, Z)}{p_{\theta^{h}}(Y)} \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \mathrm{d} Z \quad=\log \left(\frac{1}{p_{\theta^{h}}(Y)} \int p_{\theta^{h+1}}(Y, Z) \mathrm{d} Z\right) \\
& =\log \frac{p_{\theta^{h+1}}(Y)}{p_{\theta^{h}}(Y)}
\end{aligned}
$$

EM property

We have to show that

$$
\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y) \geq 0
$$

Because $\theta^{h+1}=\arg \max _{\theta} \mathbb{E}_{\theta^{h}}\left[\log p_{\theta}(Y, Z) \mid Y\right]$, we have that

$$
\begin{aligned}
0 & \leq \mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h+1}}(Y, Z) \mid Y\right]-\mathbb{E}_{\theta^{h}}\left[\log p_{\theta^{h}}(Y, Z) \mid Y\right] \\
& =\mathbb{E}_{\theta^{h}}\left[\left.\log \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right] \quad \leq \log \left(\mathbb{E}_{\theta^{h}}\left[\left.\frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \right\rvert\, Y\right]\right) \quad \text { (Jens } \\
& =\log \int \frac{p_{\theta^{h}}(Y, Z)}{p_{\theta^{h}}(Y)} \frac{p_{\theta^{h+1}}(Y, Z)}{p_{\theta^{h}}(Y, Z)} \mathrm{d} Z \quad=\log \left(\frac{1}{p_{\theta^{h}}(Y)} \int p_{\theta^{h+1}}(Y, Z) \mathrm{d} Z\right) \\
& =\log \frac{p_{\theta^{h+1}}(Y)}{p_{\theta^{h}}(Y)} \quad=\log p_{\theta^{h+1}}(Y)-\log p_{\theta^{h}}(Y)
\end{aligned}
$$

Two version of the ELBO

$$
J_{\theta, q}(Y)=\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right]
$$

(lower bound)

Two version of the ELBO

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(q(Z) / p_{\theta}(Z \mid Y)\right)
\end{aligned}
$$

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(q(Z) / p_{\theta}(Z \mid Y)\right) \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(\frac{q(Z) p_{\theta}(Y)}{p_{\theta}(Y, Z)}\right)
\end{aligned}
$$

Two version of the ELBO

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \quad \text { (lower bound) } \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(q(Z) / p_{\theta}(Z \mid Y)\right) \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(\frac{q(Z) p_{\theta}(Y)}{p_{\theta}(Y, Z)}\right) \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log q(Z)-\mathbb{E}_{q} \log p_{\theta}(Y)+\mathbb{E}_{q} \log p_{\theta}(Y, Z)
\end{aligned}
$$

Two version of the ELBO

$$
\begin{aligned}
J_{\theta, q}(Y) & =\log p_{\theta}(Y)-K L\left[q(Z) \| p_{\theta}(Z \mid Y)\right] \quad \text { (lower bound) } \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(q(Z) / p_{\theta}(Z \mid Y)\right) \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log \left(\frac{q(Z) p_{\theta}(Y)}{p_{\theta}(Y, Z)}\right) \\
& =\log p_{\theta}(Y)-\mathbb{E}_{q} \log q(Z)-\mathbb{E}_{q} \log p_{\theta}(Y)+\mathbb{E}_{q} \log p_{\theta}(Y, Z) \\
& =\mathbb{E}_{q} \log p_{\theta}(Y, Z) \underbrace{-\mathbb{E}_{q} \log q(Z)}_{\text {entropy } \mathcal{H}(q)}
\end{aligned}
$$

Mean-field approximation

- We know that the function q_{1} that minimizes

$$
F\left(q_{1}\right)=\int L\left(z_{1}, q_{1}\left(z_{1}\right)\right) \mathrm{d} z_{1}
$$

satisfies (see \#35 or [Bea03])

$$
\partial q_{1}\left(z_{1}\right) L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=0
$$

Mean-field approximation

- We know that the function q_{1} that minimizes

$$
F\left(q_{1}\right)=\int L\left(z_{1}, q_{1}\left(z_{1}\right)\right) \mathrm{d} z_{1}
$$

satisfies (see \#35 or [Bea03])

$$
\partial q_{1}\left(z_{1}\right) L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=0
$$

- Let us consider $z=\left(z_{1}, z_{2}\right), q(z)=q_{1}\left(z_{1}\right) q_{2}\left(z_{2}\right)$

Mean-field approximation

- We know that the function q_{1} that minimizes

$$
F\left(q_{1}\right)=\int L\left(z_{1}, q_{1}\left(z_{1}\right)\right) \mathrm{d} z_{1}
$$

satisfies (see \#35 or [Bea03])

$$
\partial q_{1}\left(z_{1}\right) L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=0
$$

- Let us consider $z=\left(z_{1}, z_{2}\right), q(z)=q_{1}\left(z_{1}\right) q_{2}\left(z_{2}\right)$ and define

$$
L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=q_{1}\left(z_{1}\right) \int q_{2}\left(z_{2}\right) \log \frac{q_{1}\left(z_{1}\right) q_{2}\left(z_{2}\right)}{p(z)} d z_{2} \quad \Rightarrow \quad F\left(q_{1}\right)=K L[q \| p] .
$$

Mean-field approximation

- We know that the function q_{1} that minimizes

$$
F\left(q_{1}\right)=\int L\left(z_{1}, q_{1}\left(z_{1}\right)\right) \mathrm{d} z_{1}
$$

satisfies (see \#35 or [Bea03])

$$
\partial q_{1}\left(z_{1}\right) L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=0
$$

- Let us consider $z=\left(z_{1}, z_{2}\right), q(z)=q_{1}\left(z_{1}\right) q_{2}\left(z_{2}\right)$ and define

$$
L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=q_{1}\left(z_{1}\right) \int q_{2}\left(z_{2}\right) \log \frac{q_{1}\left(z_{1}\right) q_{2}\left(z_{2}\right)}{p(z)} d z_{2} \quad \Rightarrow \quad F\left(q_{1}\right)=K L[q \| p] .
$$

- Observe that

$$
\partial q_{1}\left(z_{1}\right) L\left(z_{1}, q_{1}\left(z_{1}\right)\right)=\log q_{1}\left(z_{1}\right)-\int q_{2}\left(z_{2}\right) \log p(z) d z_{2}+\mathrm{cst}
$$

Variational lemma

- Consider

$$
F(q)=\int L(z, q(z)) d z
$$

Variational lemma

- Consider

$$
F(q)=\int L(z, q(z)) d z
$$

- q is optimal if, for any function h,

$$
\left.\partial_{t} F(q+t h)\right|_{t=0}=0
$$

Variational lemma

- Consider

$$
F(q)=\int L(z, q(z)) d z
$$

- q is optimal if, for any function h,

$$
\left.\partial_{t} F(q+t h)\right|_{t=0}=0
$$

- Observe that

$$
\partial_{t} F(q+t h)=\int h(z) \partial_{q(z)} L(z, q(z)) d z
$$

Variational lemma

- Consider

$$
F(q)=\int L(z, q(z)) d z
$$

- q is optimal if, for any function h,

$$
\left.\partial_{t} F(q+t h)\right|_{t=0}=0
$$

- Observe that

$$
\partial_{t} F(q+t h)=\int h(z) \partial_{q(z)} L(z, q(z)) d z
$$

- This must be zero for any function h, meaning that

$$
\partial_{q(z)} L(z, q(z)) \equiv 0
$$

[^0]: ${ }^{1} x$ is dropped for the sake of clarity
 ${ }^{2}$ We will use $\int \ldots \mathrm{d} z$ even when Z is discrete (should be $\sum_{z \in \mathcal{Z}}$).

[^1]: ${ }^{1} x$ is dropped for the sake of clarity
 ${ }^{2}$ We will use $\int \ldots \mathrm{d} z$ even when Z is discrete (should be $\sum_{z \in \mathcal{Z}}$).

[^2]: ${ }^{3}$ which includes most PLN, SBM and LBM.

[^3]: ${ }^{3}$ which includes most PLN, SBM and LBM.

[^4]: ${ }^{3}$ which includes most PLN, SBM and LBM.

[^5]: ${ }^{1}$ Actually log-evidence, as the evidence is $p(Y)$

[^6]: ${ }^{1}$ Actually log-evidence, as the evidence is $p(Y)$

[^7]: ${ }^{1}$ Actually log-evidence, as the evidence is $p(Y)$

[^8]: ${ }^{1}$ Actually log-evidence, as the evidence is $p(Y)$

