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Outline

Models with latent variables in ecology

Variational inference for incomplete data models

Variational inference for species abundances and network models

Beyond variational inference
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Part 2

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference
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Incomplete data models

Outline

Incomplete data models
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Incomplete data models

Models with latent variables

Notations.
Y observed variables (responses)
x observed covariates (explanatory)

Z latent (= unobserved, hidden, state) variables

6 unknown parameters
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Incomplete data models

Models with latent variables

Notations.
Y observed variables (responses)
x observed covariates (explanatory)

Z latent (= unobserved, hidden, state) variables

6 unknown parameters

'Definition’ of latent variables.

» Frequentist setting:

latent variables = random, parameters = fixed
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Incomplete data models

Models with latent variables

Notations.

Y observed variables (responses)
x observed covariates (explanatory)
Z latent (= unobserved, hidden, state) variables

6 unknown parameters

'Definition’ of latent variables.

» Frequentist setting:

latent variables = random, parameters = fixed
> Bayesian setting:
both latent variables and parameters = random

but

# latent variables ~ # data, # parameters < # data
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Incomplete data models

Likelihoods

"Complete’ likelihood : both latent and observed variables!:
pe(Y,2Z) = po(Y,Z;x)

— often reasonably easy to handle, but involves the unobserved Z

Ixis dropped for the sake of clarity
2We will use [ ... dz even when Z is discrete (should be >ez)
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Incomplete data models

Likelihoods

"Complete’ likelihood : both latent and observed variables!:
pe(Y,2Z) = po(Y,Z;x)

— often reasonably easy to handle, but involves the unobserved Z

"Observed’ likelihood = marginal likelihood of the observed data?

pe(Y)=/Zpe(sz) dz

— involves only the observed Y, but most often intractable

Ixis dropped for the sake of clarity
2We will use [ ... dz even when Z is discrete (should be >ez)
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Incomplete data models
Maximum likelihood
Maximum likelihood estimate (MLE):

OpmLe = arg[;nax po(Y) = arggnax /pg(Y,z) dz

most often intractable
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Incomplete data models

Maximum likelihood

Maximum likelihood estimate (MLE):
OmLe = arg max pg(Y) = arg max /pg(Y,z) dz
6 0

most often intractable

Decomposition of the log-likelihood [DLR77]:
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Incomplete data models

Maximum likelihood

Maximum likelihood estimate (MLE):
OmLe = arg max pg(Y) = arg max /pg(Y,z) dz
6 0

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

po(Z 1Y) =po(Y,Z)/pe(Y)
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Incomplete data models

Maximum likelihood
Maximum likelihood estimate (MLE):
OmLe = arg max pg(Y) = arg max /pg(Y,z) dz
7 0

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition
Po(Z | Y) =po(Y,Z)/po(Y)
o (reverting the ratio and taking the log)

log po(Y) = log pg(Y,Z) —logpg(Z | Y)
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Incomplete data models

Maximum likelihood

Maximum likelihood estimate (MLE):
OmLe = arg max pg(Y) = arg max /pg(Y,z) dz
6 0

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition
Po(Z | Y)=po(Y,Z)/po(Y)
o (reverting the ratio and taking the log)
log pg(Y') = log pg(Y, Z) — log po(Z | Y)
and (taking the conditional expectation on both side)

Egllog pa(Y) | Y] = Eg[logpe(Y,Z) | Y] — Egllogpe(Z | Y) | Y]
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Incomplete data models

Maximum likelihood

Maximum likelihood estimate (MLE):
OmLe = arg max pg(Y) = arg max /pg(Y,z) dz
6 0

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition
Po(Z | Y)=po(Y,Z)/po(Y)
o (reverting the ratio and taking the log)
log po(Y) = log po(Y, Z) —log po(Z | Y)
and (taking the conditional expectation on both side)
Eg[log po(Y) | Y] =Eog[log ps(Y,Z) | Y] —Egllogpe(Z | Y) | Y]

that is
log po(Y) = Egllog pa(Y, Z) | Y] —Egllog pe(Z | Y) | Y]
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Incomplete data models

Decomposition of log py(Y)

log po(Y) = Ep[log po(Y,Z) | Y] — Egllogpe(Z | Y) | Y]

log pp(Y) = (observed) log-likelihood = objective function
Egllog po(Y,Z) | Y] = conditional expectation of the 'complete’ log-likelihood

—Egllogpg(Z | Y) | Y] = conditional entropy = H (pg(Z | Y))
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Incomplete data models

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting 6" the estimate at step h, repeat until convergence

"1 = arg max Egn[log po(Y,Z) | Y]
0

which requires to (sub-)steps:
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Incomplete data models

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting 6" the estimate at step h, repeat until convergence

0" = arg max Egu[log ps(Y,2Z) | Y]
0
which requires to (sub-)steps:

Expectation step = computation of all moments needed to evaluate Eg[- | Y]
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Incomplete data models

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting 6" the estimate at step h, repeat until convergence

0" = arg max Egu[log ps(Y,2Z) | Y]
0
which requires to (sub-)steps:
Expectation step = computation of all moments needed to evaluate Eg[- | Y]

Maximization step = update the estimate as arg maxy
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Incomplete data models

Expectation-maximization (EM) algorithm (1/2)

Iterative algorithm [DLR77]: denoting 6" the estimate at step h, repeat until convergence

"1 = arg max Egn[log po(Y,Z) | Y]
0

which requires to (sub-)steps:

Expectation step = computation of all moments needed to evaluate Eg[- | Y]
Maximization step = update the estimate as arg maxy

Main property:

log pgr1(Y) > log pgn(Y)
— Proof in #32.
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Incomplete data models

Expectation-maximization (EM) algorithm (2/2)

0" = arg max Eyp [log pa(Y, Z) | Y]
6 ~~
~——E step
M step
Some remarks.
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Incomplete data models

Expectation-maximization (EM) algorithm (2/2)

0" = arg max Eyp [log pa(Y, Z) | Y]
6 ~~
~——E step
M step
Some remarks.
1. 6 occurs twice in the formula
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Incomplete data models

Expectation-maximization (EM) algorithm (2/2)

6" = arg max Egn [log pg(Y, Z) | Y]
0~

~——E step
M step

Some remarks.

1. 6 occurs twice in the formula

2. Relies on the 'complete’ (= joint): easier to handle
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Incomplete data models

Expectation-maximization (EM) algorithm (2/2)

0" = arg max Eyp [log pa(Y, Z) | Y]
0~

~——E step
M step

Some remarks.

1. 6 occurs twice in the formula
2. Relies on the 'complete’ (= joint): easier to handle

3. The objective function log pg(Y) is never evaluated
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Incomplete data models

Expectation-maximization (EM) algorithm (2/2)

0" = arg max Eyp [log pa(Y, Z) | Y]
0~

~——E step
M step

Some remarks.

1. 6 occurs twice in the formula
2. Relies on the 'complete’ (= joint): easier to handle
3. The objective function log pg(Y) is never evaluated

4. Actually, no need to maximize wrt 6:
Egn[log pgn (Y, Z) | Y] > Egn[log pgni1 (Y, Z) | Y]

suffices ('generalized’ EM = GEM)
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Incomplete data models

M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

3which includes most PLN, SBM and LBM.
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Incomplete data models

M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family3
IngG(Y7 Z) = t(Y7 Z)TG - a(Y7 Z) - b(@)

then
Eqllog po(Y, 2) | Y] = Eo[(Y. 2) | YIT0 = Egla(Y. 2) | Y] - b(6)

3which includes most PLN, SBM and LBM.
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Incomplete data models

M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family3
log po(Y,Z) = t(Y,Z)T6 — a(Y, Z) — b(6)

then
Egllog po(Y,Z) | Y] = Ep[t(Y,Z) | Y]T0 —Eg[a(Y, Z) | Y] — b(6)

» Usual MLE for 6

> Provided that Eg[t(Y,Z) | Y] and Eg[a(Y, Z) | Y] can be evaluated

3which includes most PLN, SBM and LBM.
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Incomplete data models

E step

Critical step: requires to compute some moments of

po(z] v) = PV 2)

po(Y)

Three situations.
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Incomplete data models

E step

Critical step: requires to compute some moments of

p@(Y7 Z)

po(Z|Y)= oY)

Three situations.

> Easy cases: explicit E step
— mixture models (Bayes formula), simple mixed models (close form conditional)
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Incomplete data models

E step

Critical step: requires to compute some moments of

p@(Y7 Z)

po(Z|Y)= oY)

Three situations.

> Easy cases: explicit E step
— mixture models (Bayes formula), simple mixed models (close form conditional)

» Tricky cases: non-explicit, but still exact E step, ...
— hidden Markov models (forward-backward recursions), evolutionary models
(upward-downward), belief propagation on trees...
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Incomplete data models

E step

Critical step: requires to compute some moments of

p@(Y7 Z)

po(Z|Y)= oY)

Three situations.

> Easy cases: explicit E step
— mixture models (Bayes formula), simple mixed models (close form conditional)

» Tricky cases: non-explicit, but still exact E step, ...
— hidden Markov models (forward-backward recursions), evolutionary models
(upward-downward), belief propagation on trees...

> Bad cases: no exact evaluation
— either sample from py(Z | Y) (Monte-Carlo)
— or approximate q(Z) ~ pg(Z | Y') (variational approximations)
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Incomplete data models

Poisson log-normal model

Univariate case. (p = 1 species)
> Z ~ N(0,0?)
> Y ~ P (et te)

— Z is marginally Gaussian (- -)
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Incomplete data models

Poisson log-normal model

Univariate case. (p = 1 species)
> Z ~ N(0,0?)
> Y ~ P (ertE)

— Z is marginally Gaussian (- -)

Conditional distribution. o

22
p(z| Y =y)ocexp (—ﬁ —e“+z+y(u+2)) .

— no close form

— Z is not conditionaly Gaussian (—vs - -)
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Incomplete data models

Stochastic block-model

Poisson model. (no covariate)
> {Z}iid ~M(1,7)
> Yj~P (eaz"zf)

— The Z; are marginally independent
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Incomplete data models

Stochastic block-model

Poisson model. (no covariate)
> {Z}iid ~ M(1,7)
> Y;~P (eaz/‘zj> Directed graphical model

— The Z; are marginally independent @

. W
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Incomplete data models

Stochastic block-model

Poisson model. (no covariate)
> {Z}iid ~M(1,7)
> Y;~P (eazfzj> Moralization of (Z1, Z;)

— The Z; are marginally independent e @ e

Moralization. [Lau96]

p(Zi)p(Z)p(Yi | Zi, Z)) @ @

p(Zi, Z; | Yy) = S
Y p(Yi)

does not factorize in (Z;, Z;).
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Incomplete data models
Stochastic block-model
Poisson model. (no covariate)
> {Z}iid ~M(1,7)
> Y ~P (eo‘z/‘zj> Moralization for all pairs

— The Z; are marginally independent @

Moralization. [Lau96]

()

p(Zi, Z; | Yy) = p(Zi)p(ng(p\(/-\-/)lj —— @‘\@D/'

does not factorize in (Z;, Z;).
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Incomplete data models

Stochastic block-model

Poisson model. (no covariate)
> {Z}iid ~M(1,7)
> Yj~P (eazfzf)

— The Z; are marginally independent

Moralization. [Lau96]

p(Z)p(Z)p(Yi | Zi, Z))

p(Z,Z; | Yy) =
(2,71 Yy) o(Y))

does not factorize in (Z;, Z;).

— The Z; are all conditionally dependent
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Variational EM

Outline

Variational EM
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Variational EM

General aim

Problem. pg(Z | Y) being intractable, we look for a 'good’ approximation of it:

a(Z) = pe(Z1Y)

More specifically, given
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Variational EM

General aim

Problem. pg(Z | Y) being intractable, we look for a 'good’ approximation of it:

a(Z) = pe(Z1Y)

More specifically, given

» a set of approximating distributions Q and
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Variational EM

General aim

Problem. pg(Z | Y) being intractable, we look for a 'good’ approximation of it:

qa(Z) = pe(Z1Y)

More specifically, given
» a set of approximating distributions Q and

> a divergence measure D[q||p],
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Variational EM

General aim

Problem. pg(Z | Y) being intractable, we look for a 'good’ approximation of it:

a(Z) = pe(Z1Y)

More specifically, given
» a set of approximating distributions Q and
> a divergence measure D[q||p],

we look for
g* = argmin D [q(2)lpo(Z | V)]
qeQ

S. Robin 2 - Statistical inference of incomplete data models Luxembourg, Dec'20

16 /29



Variational EM

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent
and concise review
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Variational EM
Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent
and concise review

Not all methods enter the framework described above
> loopy belief propagation [MWJ99]
» minimization of Bethe's free energy [YFWO01]
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Variational EM
Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent
and concise review

Not all methods enter the framework described above
> loopy belief propagation [MWJ99]
» minimization of Bethe's free energy [YFWO01]

Choice of the divergence measure.
» Most popular choice = Kiillback—Leibler:
Dlqllp] = KL[ql|p] = Eqlog (a/p)

— the error log(q/p) is averaged wrt the approximation q itself
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Variational EM
Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent
and concise review

Not all methods enter the framework described above
> loopy belief propagation [MWJ99]
» minimization of Bethe's free energy [YFWO01]

Choice of the divergence measure.

» Most popular choice = Kiillback—Leibler:

Dlqllp] = KL[ql|p] = Eqlog (a/p)

— the error log(q/p) is averaged wrt the approximation q itself

> Expectation propagation (EP, [Min01]): D[q|lp] = KL[p||q]
— more sensible, but requires integration wrt p
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Variational EM

Variational approximations

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent
and concise review

Not all methods enter the framework described above
> loopy belief propagation [MWJ99]
» minimization of Bethe's free energy [YFWO01]

Choice of the divergence measure.

» Most popular choice = Kiillback—Leibler:

Dlqllp] = KL[ql|p] = Eqlog (a/p)

— the error log(q/p) is averaged wrt the approximation q itself

> Expectation propagation (EP, [Min01]): D[q|lp] = KL[p||q]
— more sensible, but requires integration wrt p

> Many others (see e.g. [Min05])
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Variational EM

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('"VE') step

! Actually log-evidence, as the evidence is p(Y)
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Variational EM

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('"VE') step

'Evidence lower bound’ (ELBO) = lower bound of the log-likelihood:

Jo.q(Y) =log po(Y) — KL[q(Z)llpe(Z | V)]

! Actually log-evidence, as the evidence is p(Y)
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Variational EM

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('"VE') step

'Evidence lower bound’ (ELBO) = lower bound of the log-likelihood:

Jo.q(Y) =log po(Y) — KL[q(Z)llpe(Z | V)]

VEM algorithm.
VE step: maximize Jg q(Y) wrt g

M step: maximize Jg o(Y) wrt 0

! Actually log-evidence, as the evidence is p(Y)
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Variational EM

Variational EM algorithm

In a nutshell: replace the E step with an approximation ('"VE') step

'Evidence lower bound’ (ELBO) = lower bound of the log-likelihood:

Jo.q(Y) =log po(Y) — KL[q(Z)llpe(Z | V)]

VEM algorithm.
VE step: maximize Jg q(Y) wrt g

M step: maximize Jg o(Y) wrt 0

Property: Jg 4(Y') increases at each step.

! Actually log-evidence, as the evidence is p(Y)
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Variational EM

Variational EM algorithm

The ELBO can written in two ways:

Jo,q(Y) =logpo(Y) — KL[q(Z)lpo(Z | Y)]

=Eqlogpe(Y,Z) —Eqlogq(Z)

— See #33
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Variational EM

Variational EM algorithm

The ELBO can written in two ways:

Jo.q(Y) =log po(Y) — KL[a(Z)lpe(Z | V)]

=Eqlogpe(Y,Z) —Eqlogq(Z)

— See #33

VEM algorithm.
> VE step (approximation):

q"*t = argmin KL[q(2)lpgn(Z | Y)]
qeQ

> M step (parameter update):

6" = arg max Egni1 log po(Y, Z)
0
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Variational EM

EM as a VEM algorithm

We have that

log po(Y) = Ellog po(Y,Z) | Y] —Ellogpo(Z | Y) | Y]

Jo,q(Y) = Eqllog po(Y', Z)] — Eq[log q(2)]

S. Robin 2 - Statistical inference of incomplete data models

(EM)
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Variational EM

EM as a VEM algorithm

We have that

log po(Y) = Ellog po(Y,Z) | Y] —Ellogpo(Z | Y) | Y] (EM)
Jo.q(Y) = Eqllog po(Y', Z)] — Eq[log q(2)] (VEM)
» Both are the same iff q(Z) = pg(Z | Y) (as KL [¢"1(Z)||pgn(Z | Y)] = 0)
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Variational EM

EM as a VEM algorithm

We have that

log po(Y) = Ellog po(Y,Z) | Y] —Ellogpo(Z | Y) | Y] (EM)
Jo.q(Y) = Eqllog po(Y', Z)] — Eq[log q(2)] (VEM)
» Both are the same iff q(Z) = pg(Z | Y) (as KL [¢"1(Z)||pgn(Z | Y)] = 0)

> This happens when Q is unrestricted, that is

§"H(2) = argmin KLIA(D)llpon (2] Y)] = pon(Z | ¥)
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Variational EM

EM as a VEM algorithm

We have that

log po(Y) = Ellog po(Y,Z) | Y] —Ellogpo(Z | Y) | Y] (Em)
Jo.q(Y) = Eqllog po(Y', Z)] — Eq[log q(2)] (VEM)
» Both are the same iff q(Z) = pg(Z | Y) (as KL [¢"1(Z)||pgn(Z | Y)] = 0)

» This happens when Q is unrestricted, that is

§"H(2) = argmin KLIA(D)llpon (2] Y)] = pon(Z | ¥)

» This provides us with a second proof of EM’s main property
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Variational EM

"Mean-field” approximations
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Variational EM

'Mean-field" approximations

Choice of the approximation class. A popular choice is

Ofact = {factorable distributions} = {q : q(Z) = H qi(Zi)}
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Variational EM

"Mean-field" approximations

Choice of the approximation class. A popular choice is

Ofact = {factorable distributions} = {q : q(Z) = H qi(Z;)}

i

Property. For a given distribution p(Z),

q* = argmin KL[q||p]
€ Qfact

satisfies
q7 (Z;) oc exp (E(g,j#, q log p(Z))

— Proof in [Bea03] (sketch in #34)
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Variational EM

"Mean-field" approximations

Choice of the approximation class. A popular choice is

Ofact = {factorable distributions} = {q : q(Z) = H qi(Z;)}

i

Property. For a given distribution p(Z),

q* = argmin KL[q||p]
€ Qfact

satisfies
q7 (Z;) oc exp (IE@J.#, q log p(Z))

— Proof in [Bea03] (sketch in #34)

> log g7 (Z;) is obtained by setting the {Z;};; 'to their respective mean’ (each wrt to g7).
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Variational Bayes EM

Outline

Variational Bayes EM
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Variational Bayes EM

Bayesian inference

Bayesian setting: The parameters in 6 are random (no latent variable yet)

S. Robin 2 - Statistical inference of incomplete data models Luxembourg, Dec'20 23 /29



Variational Bayes EM

Bayesian inference

Bayesian setting: The parameters in 6 are random (no latent variable yet)

» 'Prior" = marginal distribution of the parameter

p(0)
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Variational Bayes EM

Bayesian inference

Bayesian setting: The parameters in 6 are random (no latent variable yet)

» 'Prior" = marginal distribution of the parameter

p(0)

» ’Likelihood’ = conditional distribution of the observations

p(Y |6)
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Variational Bayes EM

Bayesian inference

Bayesian setting: The parameters in 6 are random (no latent variable yet)

» 'Prior" = marginal distribution of the parameter

p(0)

» ’Likelihood’ = conditional distribution of the observations

p(Y |6)

> 'Posterior’ = conditional distribution of the parameters given the data

p(0)p(Y | 6)

POY) = o oye(v 1 6) a6
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Variational Bayes EM

Variational Bayes

Ideal case: Explicit posterior — Conjugate priors
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Variational Bayes

Ideal case: Explicit posterior — Conjugate priors

Most of the time: No explicit form for p(6 | Y)
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Variational Bayes EM

Variational Bayes

Ideal case: Explicit posterior — Conjugate priors

Most of the time: No explicit form for p(6 | Y)
> Sample from it, i.e. try to get

iid
{0"h<b<e = pP(0] Y)
— Monte-Carlo (MC), MCMC, SMC, HMC, ...
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Variational Bayes EM

Variational Bayes

Ideal case: Explicit posterior — Conjugate priors
Most of the time: No explicit form for p(6 | Y)
> Sample from it, i.e. try to get
iid
{0°h<b<e = PO Y)
— Monte-Carlo (MC), MCMC, SMC, HMC, ...
> Approximate it, i.e. look for

a(0) = p(0 | Y)
— Variational Bayes (VB) [Att00]
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Variational Bayes EM

Variational Bayes

Ideal case: Explicit posterior — Conjugate priors

Most of the time: No explicit form for p(6 | Y)

> Sample from it, i.e. try to get
iid
{0°h<b<B = p(0]Y)
— Monte-Carlo (MC), MCMC, SMC, HMC, ...

> Approximate it, i.e. look for
a(6) ~ p(6 ] Y)
— Variational Bayes (VB) [Att00]

Example. Consider N' = {Gaussian distributions}

g7(6) = argmin KL[q(6) | p(6] )]
qeN

(or KL[p(0 [ Y) | a(6)])
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Variational Bayes EM

Including latent variables

Bayesian model with latent variables.

0 ~ p(0) prior distribution

Z ~p(Z|0) latent variables

Y~p(Y|6,2) observed variables
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Variational Bayes EM

Including latent variables

Bayesian model with latent variables.

0 ~ p(0) prior distribution
Z ~p(Z|0) latent variables
Y~p(Y|6,2) observed variables

Aim of Bayesian inference. Determine the joint conditional distribution

p(6) p(Z | 0) p(Y | 6,2)

p(6.2|Y) = o)

where
p(Y) = // p(Z0) p(Y | 6,2) do dZ

is most often intractable
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Variational Bayes EM

Variational Bayes EM

Variational approximation of the joint conditional p(6,Z | Y)

q(6,2) = argmin KL[q(6, Z)[p(0,Z | Y)]
qeQ

taking Q = Qe = {4+ 4(6, Z) = q9(6)qz(2)} [Be203,5603)

S. Robin 2 - Statistical inference of incomplete data models Luxembourg, Dec'20 26 /29



Variational Bayes EM

Variational Bayes EM

Variational approximation of the joint conditional p(6,Z | Y)

q(0, 2) = argmin KL[q(6, Z)||p(0,Z | Y)]
qeQ

taking Q = Qe = {4+ 4(6, Z) = q9(6)qz(2)} [Be203,5603)

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation
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Variational Bayes EM

Variational Bayes EM

Variational approximation of the joint conditional p(6,Z | Y)

q(0, 2) = argmin KL[q(6, Z)||p(0,Z | Y)]
qeQ

taking Q = Qe = {4+ 4(6, Z) = q9(6)qz(2)} [Be203,5603)

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

» VBE step = update of the latent variable distribution

q5"1(Z) ox exp (B p log p(Y, 2,0) )
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Variational Bayes EM

Variational Bayes EM

Variational approximation of the joint conditional p(6,Z | Y)

q(0,2) = argmin KL[q(0,Z)[|p(6,Z | V)]
qeQ
taking Q = Qpce = {q : 4(6, Z) = qs(0)az(2)} [Bea03.503]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

» VBE step = update of the latent variable distribution

q5"1(Z) ox exp (B p log p(Y, 2,0) )

» VBM step = update of the parameter distribution

aptl(0) o< exp (quﬂ log p(Y, Z, 9))
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Variational Bayes EM

VBEM in practice

Exponential family / conjugate prior. If

p(Y,Z | 0) belongs to the exponential family

and p(0) is the corresponding conjugate prior

then both the VBE and VBM steps are completely explicit [BG03]
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Variational Bayes EM

VBEM in practice

Exponential family / conjugate prior. If

p(Y,Z | 0) belongs to the exponential family

and p(0) is the corresponding conjugate prior

then both the VBE and VBM steps are completely explicit [BG03]

Many VBEM's.
> Force further factorization among the Z (see e.g. [LBA12,GDR12,KBCG15] for block-models)

» Use further approximations when conjugacy does not hold [JJ00]
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Variational inference

Outline

Variational inference
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Variational inference

Variational inference

Variational approximations for conditional distributions pg(Z | Y) or p(6,Z | Y)

— computationally efficient alternative to Monte-Carlo methods
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Variational inference

Variational inference

Variational approximations for conditional distributions pg(Z | Y) or p(6,Z | Y)

— computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

— reasonably easy to implement
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Variational inference

Variational inference

Variational approximations for conditional distributions pg(Z | Y) or p(6,Z | Y)

— computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

— reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models

— see Part 3 for applications in statistical ecology
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Variational inference

Variational inference

Variational approximations for conditional distributions pg(Z | Y) or p(6,Z | Y)

— computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

— reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models

— see Part 3 for applications in statistical ecology

Statistical guarantees still need to be established for the resulting estimates

— see Part 4
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Backup
EM property

We have to show that
log pg+1(Y) — log pgn(Y) > 0.
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egn[log pg(Y, Z) | Y], we have that

Back to #9
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EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egn[log pg(Y, Z) | Y], we have that

0 < Egallog pgni1 (Y, Z) | Y] = Egnllog pgn(Y, Z) | Y]

Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that

0 < Egallog pgni1 (Y, Z) | Y] = Egnllog pgn(Y, Z) | Y]

o pyn+1(Y, Z)

=k | Y
o |8 (v, 2) |

Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that
0 < Egn[log pgr1(Y, Z) | Y] — Egnllog pgn(Y, Z) | Y]

Y,Z Y, Z
=FEgn |log Pors1(Y, Z) | y] < log (JEgh {M | Y:D (Jensen)
peh(Y,Z) Pgh(Y,Z)

Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that
0 < Egn[log pgr1(Y, Z) | Y] — Egnllog pgn(Y, Z) | Y]

= Iog/ Por(Y. 2) pgral¥, Z) dz
Por(Y)  pon(Y.Z)

Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that
0 < Egn[log pgr1(Y, Z) | Y] — Egnllog pgn(Y, Z) | Y]

=Eg, [Iog % | Y] < log (Egh {% | YD (Jensen)

_ por (Y, Z) pgnii (Y, Z) _ 1
= |0g/ pgh(y) th(Y_ Z) dZ = |Og (7p9h(y) /peh+1(y7 Z) dZ)

Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that

0 < Egallog pgni1 (Y, Z) | Y] = Egnllog pgn(Y, Z) | Y]

Y,Z Y,Z
=En [|0g o1 (Y, Z) | y] < log (JEgh {M | Y:D (Jensen)
peh(Y,Z) peh(Y7Z)
(Y, Z Y,z 1
_ Iog/ por(Y,Z) pora (Y, 2) (o _ log (7/,36“1(\/7 7) dZ)
Por(Y)  pon(Y.Z) pen(Y)
— log Port1(Y)
Pon(Y)
Back to #9
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Backup
EM property

We have to show that
log pght1(Y) — log pgn(Y) = 0.

Because 01 = arg maxg Egi[log po(Y, Z) | Y], we have that
0 < Egn[log pgr1(Y, Z) | Y] — Egnllog pgn(Y, Z) | Y]

=Eg, [Iog % | Y] < log (Egh {% | YD (Jensen)

_ por (Y, Z) pgnii (Y, Z) _ 1
= |0g/ pgh(y) th(Y_ Z) dZ = |Og (7p9h(y) /peh+1(y7 Z) dZ)

pgh+1(Y)

= log
Por(Y)

= log pgn1(Y) — log pgn(Y)

Back to #9
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Backup

Two version of the ELBO

Jo.q(Y) = log pa(Y) — KLIa(Z) lpo(Z | V)] (lower bound)
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Backup

Two version of the ELBO

Jo.q(Y) =log po(Y) — KL[q(Z)llpe(Z | Y)]

= log pg(Y) — Eqlog (q(Z)/pa(Z | Y))
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Backup

Two version of the ELBO

Jo.q(Y) = log pa(Y) — KLIa(Z) lpo(Z | V)] (lower bound)

= log pg(Y) — Eqlog (q(Z)/pa(Z | Y))

= log po(Y) — Eq log (M)

po(Y,Z)
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Backup

Two version of the ELBO

Jo.q(Y) = log pa(Y) — KLIa(Z) lpo(Z | V)] (lower bound)
— log ps(Y) — Eqlog (a(Z)/pa(Z | Y))

= log po(Y) — Eq log (M)

po(Y,Z)

=log py(Y) —Eqlogq(Z) — Eqlog py(Y) + Eqlog pe(Y, Z)
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Backup

Two version of the ELBO

Jo.q(Y) = log pa(Y) — KLIa(Z) lpo(Z | V)] (lower bound)
— log ps(Y) — Eqlog (a(Z)/pa(Z | Y))

q(Z)ps(Y) )

= log po(Y) — Eq log ( oo (Y. 2)

=log py(Y) —Eqlogq(Z) — Eqlog py(Y) + Eqlog pe(Y, Z)

=Eqlogpe(Y,Z) — Eqlog q(Z)
—_———

entropy H(q)

Back to #19
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Backup

Mean-field approximation

» We know that the function g; that minimizes

F(a1) :/L(217q1(21)) dz
satisfies (see #35 or [Bea03])

9q1(z1) L(z1,q1(z1)) =0
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Backup

Mean-field approximation

» We know that the function g; that minimizes

F(a1) :/L(217q1(21)) dz
satisfies (see #35 or [Bea03])

9q1(z1) L(z1,q1(z1)) =0

> Let us consider z = (z1, z2), q(2) = q1(z1)q2(22)
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Backup

Mean-field approximation

» We know that the function g; that minimizes

F(a1) :/L(217q1(21)) dz
satisfies (see #35 or [Bea03])

9q1(z1) L(z1,q1(z1)) =0

> Let us consider z = (z1,22), q(z) = q1(z1)g2(22) and define

Lo (@) = a(ar) [ @e)log WEEED 0z o Fq) = Klglel

p(z)
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Backup

Mean-field approximation

» We know that the function g; that minimizes

F(a1) :/L(217q1(21)) dz
satisfies (see #35 or [Bea03])

9q1(z1) L(z1,q1(z1)) =0

> Let us consider z = (z1,22), q(z) = q1(z1)g2(22) and define

Lo (@) = a(ar) [ @e)log WEEED 0z o Fq) = Klglel

p(z)
» Observe that
9a1(21) L(z1, qa(z1)) = log a(z1) — / a2(22)l0g p(2) dz> + cst

Back to #21
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Backup

Variational lemma

» Consider

Fla) = [ Lz a(2)) dz
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Variational lemma

» Consider

Fla) = [ Lz a(2)) dz

» g is optimal if, for any function h,

0:F(q+ th),_g =0
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Backup

Variational lemma

» Consider

Fla) = [ Lz a(2)) dz

» g is optimal if, for any function h,

0:F(q+ th),_g =0

> Observe that
O:F(q + th) = /h(z) Oq(z)L(z,q(2)) dz
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Backup

Variational lemma

» Consider

Fla) = [ Lz a(2)) dz

» g is optimal if, for any function h,

0:F(q+ th),_g =0

> Observe that
O:F(q + th) = /h(z) Oq(z)L(z,q(2)) dz

» This must be zero for any function h, meaning that

O4(z)L(z,q(2)) = 0.

Back to #34
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