## 2 - Statistical inference of incomplete data models

#### S. Robin

INRAE / AgroParisTech / univ. Paris-Saclay Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

## Outline

| 1 – | Models with latent variables in ecology                         | (statistical ecology |
|-----|-----------------------------------------------------------------|----------------------|
| 2 – | Variational inference for incomplete data models                | (statistics)         |
| 3 – | Variational inference for species abundances and network models | (statistical ecology |
| 4 – | Beyond variational inference                                    | (statistics)         |

## Part 2

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

## Outline

Incomplete data models

Variational FN

Variational Bayes EM

Variational inference

## Models with latent variables

### Notations.

- Y observed variables (responses)
- x observed covariates (explanatory)
- Z latent (= unobserved, hidden, state) variables
- $\theta$  unknown parameters

### Models with latent variables

#### Notations.

- Y observed variables (responses)
- x observed covariates (explanatory)
- Z latent (= unobserved, hidden, state) variables
- $\theta$  unknown parameters

#### 'Definition' of latent variables.

► Frequentist setting:

latent variables = random, parameters = fixed

### Models with latent variables

#### Notations.

- Y observed variables (responses)
- x observed covariates (explanatory)
- Z latent (= unobserved, hidden, state) variables
- $\theta$  unknown parameters

#### 'Definition' of latent variables.

► Frequentist setting:

```
latent variables = random. parameters = fixed
```

Bayesian setting:

both latent variables and parameters = random

but

# latent variables  $\simeq \#$  data, # parameters  $\ll \#$  data

### Likelihoods

'Complete' likelihood : both latent and observed variables<sup>1</sup>:

$$p_{\theta}(Y, Z) = p_{\theta}(Y, Z; x)$$

 $\rightarrow$  often reasonably easy to handle, but involves the unobserved Z

 $<sup>^{1}</sup>x$  is dropped for the sake of clarity

 $<sup>^2 \</sup>mbox{We}$  will use  $\int \dots \mbox{ d} z$  even when Z is discrete (should be  $\sum_{z \in \mathcal{Z}}).$ 

### Likelihoods

'Complete' likelihood: both latent and observed variables<sup>1</sup>:

$$p_{\theta}(Y, Z) = p_{\theta}(Y, Z; x)$$

 $\rightarrow$  often reasonably easy to handle, but involves the unobserved Z

'Observed' likelihood = marginal likelihood of the observed data<sup>2</sup>

$$p_{ heta}(Y) = \int_{\mathcal{Z}} p_{ heta}(Y, z) dz$$

 $\rightarrow$  involves only the observed Y, but most often intractable

<sup>&</sup>lt;sup>1</sup>x is dropped for the sake of clarity

<sup>&</sup>lt;sup>2</sup>We will use  $\int \dots$  dz even when Z is discrete (should be  $\sum_{z \in \mathcal{Z}}$ ).

Maximum likelihood estimate (MLE):

$$heta_{\mathit{MLE}} = rg \max_{ heta} \; p_{ heta}(Y) = rg \max_{ heta} \; \int p_{ heta}(Y,z) \; \mathrm{d}z$$

most often intractable

Maximum likelihood estimate (MLE):

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg \, max}} \ p_{\theta}(Y) = \underset{\theta}{\operatorname{arg \, max}} \ \int p_{\theta}(Y, z) \ \mathrm{d}z$$

most often intractable

Decomposition of the log-likelihood [DLR77]:

Maximum likelihood estimate (MLE):

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} p_{\theta}(Y) = \underset{\theta}{\operatorname{arg max}} \int p_{\theta}(Y, z) dz$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$p_{\theta}(Z \mid Y) = p_{\theta}(Y, Z) / p_{\theta}(Y)$$

Maximum likelihood estimate (MLE):

$$heta_{\mathit{MLE}} = rg \max_{ heta} \; p_{ heta}(Y) = rg \max_{ heta} \; \int p_{ heta}(Y,z) \; \mathrm{d}z$$

most often intractable

Decomposition of the log-likelihood [DLR77]: By definition

$$p_{\theta}(Z \mid Y) = p_{\theta}(Y, Z) / p_{\theta}(Y)$$

so (reverting the ratio and taking the log)

$$\log p_{\theta}(Y) = \log p_{\theta}(Y, Z) - \log p_{\theta}(Z \mid Y)$$

### Maximum likelihood estimate (MLE):

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg \, max}} \ p_{\theta}(Y) = \underset{\theta}{\operatorname{arg \, max}} \ \int p_{\theta}(Y,z) \ \mathrm{d}z$$

most often intractable

### Decomposition of the log-likelihood [DLR77]: By definition

$$p_{\theta}(Z \mid Y) = p_{\theta}(Y, Z) / p_{\theta}(Y)$$

so (reverting the ratio and taking the log)

$$\log p_{\theta}(Y) = \log p_{\theta}(Y, Z) - \log p_{\theta}(Z \mid Y)$$

and (taking the conditional expectation on both side)

$$\mathbb{E}_{\theta}[\log p_{\theta}(Y) \mid Y] = \mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}_{\theta}[\log p_{\theta}(Z \mid Y) \mid Y]$$

### Maximum likelihood estimate (MLE):

$$heta_{MLE} = rg \max_{ heta} \ p_{ heta}(Y) = rg \max_{ heta} \ \int p_{ heta}(Y,z) \ \mathrm{d}z$$

most often intractable

### Decomposition of the log-likelihood [DLR77]: By definition

$$p_{\theta}(Z \mid Y) = p_{\theta}(Y, Z) / p_{\theta}(Y)$$

so (reverting the ratio and taking the log)

$$\log p_{\theta}(Y) = \log p_{\theta}(Y, Z) - \log p_{\theta}(Z \mid Y)$$

and (taking the conditional expectation on both side)

$$\mathbb{E}_{\theta}[\log p_{\theta}(Y) \mid Y] = \mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}_{\theta}[\log p_{\theta}(Z \mid Y) \mid Y]$$

that is

$$\log p_{\theta}(Y) = \mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}_{\theta}[\log p_{\theta}(Z \mid Y) \mid Y]$$

## Decomposition of $\log p_{\theta}(Y)$

$$\log p_{\theta}(Y) = \mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}_{\theta}[\log p_{\theta}(Z \mid Y) \mid Y]$$

$$\log p_{\theta}(Y) = \text{(observed) log-likelihood} = \text{objective function}$$

 $\mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] = \text{ conditional expectation of the 'complete' log-likelihood}$ 

$$-\mathbb{E}_{\theta}[\log p_{\theta}(Z \mid Y) \mid Y] = \text{ conditional entropy } = \mathcal{H}(p_{\theta}(Z \mid Y))$$

Iterative algorithm [DLR77]: denoting  $\theta^h$  the estimate at step h, repeat until convergence

$$heta^{h+1} = rg \max_{ heta} \; \mathbb{E}_{ heta^h}[\log p_{ heta}(Y, Z) \mid Y]$$

which requires to (sub-)steps:

Iterative algorithm [DLR77]: denoting  $\theta^h$  the estimate at step h, repeat until convergence

$$\theta^{h+1} = \arg\max_{\theta} \; \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$$

which requires to (sub-)steps:

Expectation step = computation of all moments needed to evaluate  $\mathbb{E}_{\theta^h}[\cdot \mid Y]$ 

Iterative algorithm [DLR77]: denoting  $\theta^h$  the estimate at step h, repeat until convergence

$$\theta^{h+1} = \underset{\mathbf{q}}{\operatorname{arg\,max}} \ \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$$

which requires to (sub-)steps:

Expectation step = computation of all moments needed to evaluate  $\mathbb{E}_{\theta^h}[\cdot \mid Y]$ 

Maximization step = update the estimate as  $arg max_{\theta}$ 

Iterative algorithm [DLR77]: denoting  $\theta^h$  the estimate at step h, repeat until convergence

$$\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$$

which requires to (sub-)steps:

Expectation step = computation of all moments needed to evaluate  $\mathbb{E}_{\theta^h}[\cdot \mid Y]$ 

Maximization step = update the estimate as  $arg max_{\theta}$ 

Main property:

$$\log p_{ah+1}(Y) \geq \log p_{ah}(Y)$$

→ Proof in #32.

$$\theta^{h+1} = \underset{\mathsf{M} \text{ step}}{\operatorname{arg\,max}} \ \underbrace{\mathbb{E}_{\theta^h}}_{\mathsf{E} \text{ step}} [\log p_{\theta}(Y, Z) \mid Y]$$

Some remarks.

$$\theta^{h+1} = \underset{\mathsf{M} \text{ step}}{\operatorname{arg \, max}} \ \underbrace{\mathbb{E}_{\theta^h}}_{\mathsf{E} \text{ step}} [\log p_{\theta}(Y, Z) \mid Y]$$

#### Some remarks.

1.  $\theta$  occurs twice in the formula

$$\theta^{h+1} = \operatorname*{arg\,max}_{\theta} \underbrace{\mathbb{E}_{\theta^h}}_{\text{E step}} [\log p_{\theta}(Y, Z) \mid Y]$$

#### Some remarks.

- 1.  $\theta$  occurs twice in the formula
- 2. Relies on the 'complete' (= joint): easier to handle

$$\theta^{h+1} = \underset{\mathsf{M} \text{ step}}{\operatorname{arg \, max}} \ \underbrace{\mathbb{E}_{\theta^h}}_{\mathsf{E} \text{ step}} [\log p_{\theta}(Y, Z) \mid Y]$$

#### Some remarks.

- 1.  $\theta$  occurs twice in the formula
- 2. Relies on the 'complete' (= joint): easier to handle
- 3. The objective function  $\log p_{\theta}(Y)$  is never evaluated

$$\theta^{h+1} = \underbrace{\arg\max_{\theta}}_{\text{M step}} \underbrace{\mathbb{E}_{\theta^h}\left[\log p_{\theta}(Y, Z) \mid Y\right]}_{\text{E step}}$$

#### Some remarks.

- 1.  $\theta$  occurs twice in the formula
- 2. Relies on the 'complete' (= joint): easier to handle
- 3. The objective function  $\log p_{\theta}(Y)$  is never evaluated
- 4. Actually, no need to maximize wrt  $\theta$ :

$$\mathbb{E}_{\theta^h}[\log p_{\theta^h}(Y,Z)\mid Y] \geq \mathbb{E}_{\theta^h}[\log p_{\theta^{h+1}}(Y,Z)\mid Y]$$

suffices ('generalized' EM = GEM)

## M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

<sup>&</sup>lt;sup>3</sup>which includes most PLN, SBM and LBM.

## M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family<sup>3</sup>

$$\log p_{\theta}(Y,Z) = t(Y,Z)^{\mathsf{T}}\theta - a(Y,Z) - b(\theta)$$

then

$$\mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] = \mathbb{E}_{\theta}[t(Y, Z) \mid Y]^{\mathsf{T}}\theta - \mathbb{E}_{\theta}[a(Y, Z) \mid Y] - b(\theta)$$

<sup>&</sup>lt;sup>3</sup>which includes most PLN. SBM and LBM.

## M step

Most of the time, same difficulty as maximum likelihood in absence of latent variables

Ex.: Exponential family. If the joint likelihood belongs to the exponential family<sup>3</sup>

$$\log p_{\theta}(Y,Z) = t(Y,Z)^{\mathsf{T}}\theta - a(Y,Z) - b(\theta)$$

then

$$\mathbb{E}_{\theta}[\log p_{\theta}(Y, Z) \mid Y] = \mathbb{E}_{\theta}[t(Y, Z) \mid Y]^{\mathsf{T}}\theta - \mathbb{E}_{\theta}[a(Y, Z) \mid Y] - b(\theta)$$

- Usual MLE for θ
- ▶ Provided that  $\mathbb{E}_{\theta}[t(Y,Z) \mid Y]$  and  $\mathbb{E}_{\theta}[a(Y,Z) \mid Y]$  can be evaluated

<sup>&</sup>lt;sup>3</sup>which includes most PLN, SBM and LBM,

Critical step: requires to compute some moments of

$$p_{\theta}(Z \mid Y) = \frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}$$

Critical step: requires to compute some moments of

$$p_{\theta}(Z \mid Y) = \frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}$$

- ► Easy cases: explicit E step
  - → mixture models (Bayes formula), simple mixed models (close form conditional)

Critical step: requires to compute some moments of

$$p_{\theta}(Z \mid Y) = \frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}$$

- ► Easy cases: explicit E step
  - → mixture models (Bayes formula), simple mixed models (close form conditional)
- ► Tricky cases: non-explicit, but still exact E step, ...
  - $\rightarrow$  hidden Markov models (forward-backward recursions), evolutionary models (upward-downward), belief propagation on trees...

Critical step: requires to compute some moments of

$$p_{\theta}(Z \mid Y) = \frac{p_{\theta}(Y, Z)}{p_{\theta}(Y)}$$

- ► Easy cases: explicit E step
  - → mixture models (Bayes formula), simple mixed models (close form conditional)
- ► Tricky cases: non-explicit, but still exact E step, ...
  - $\rightarrow$  hidden Markov models (forward-backward recursions), evolutionary models (upward-downward), belief propagation on trees...
- ► Bad cases: no exact evaluation
  - $\rightarrow$  either sample from  $p_{\theta}(Z \mid Y)$  (Monte-Carlo)
  - $\rightarrow$  or approximate  $q(Z) \simeq p_{\theta}(Z \mid Y)$  (variational approximations)

## Poisson log-normal model

Univariate case. (p = 1 species)

- $ightharpoonup Z \sim \mathcal{N}(0, \sigma^2)$
- $ightharpoonup Y \sim \mathcal{P}\left(e^{\mu+Z}\right)$
- $\rightarrow$  Z is marginally Gaussian (- -)

# Poisson log-normal model

Univariate case. (p = 1 species)

$$ightharpoonup Z \sim \mathcal{N}(0, \sigma^2)$$

$$ightharpoonup Y \sim \mathcal{P}\left(e^{\mu+Z}\right)$$

 $\rightarrow$  Z is marginally Gaussian (- -)

### Conditional distribution.

$$p(z \mid Y = y) \propto \exp\left(-\frac{z^2}{2\sigma^2} - e^{\mu+z} + y(\mu+z)\right)$$

- → no close form
- $\rightarrow Z$  is not conditionaly Gaussian (- vs  $\cdots$ )



$$\mu = 1, \quad \sigma = 2$$

## Stochastic block-model

### Poisson model. (no covariate)

- $ightharpoonup \{Z_i\} \text{ iid } \sim \mathcal{M}(1,\pi)$
- $\blacktriangleright \ Y_{ij} \sim \mathcal{P}\left(e^{\alpha_{Z_i Z_j}}\right)$
- $\rightarrow$  The  $Z_i$  are marginally independent

## Stochastic block-model

Poisson model. (no covariate)

- ▶  $\{Z_i\}$  iid  $\sim \mathcal{M}(1,\pi)$
- $\blacktriangleright \ Y_{ij} \sim \mathcal{P}\left(e^{\alpha_{Z_iZ_j}}\right)$
- $\rightarrow$  The  $Z_i$  are marginally independent

### Directed graphical model



### Stochastic block-model

Poisson model. (no covariate)

- ▶  $\{Z_i\}$  iid  $\sim \mathcal{M}(1,\pi)$
- $\blacktriangleright Y_{ij} \sim \mathcal{P}\left(e^{\alpha_{Z_iZ_j}}\right)$
- $\rightarrow$  The  $Z_i$  are marginally independent

Moralization. [Lau96]

$$p(Z_i, Z_j \mid Y_{ij}) = \frac{p(Z_i)p(Z_j)p(Y_{ij} \mid Z_i, Z_j)}{p(Y_{ij})}$$

does not factorize in  $(Z_i, Z_j)$ .

Moralization of  $(Z_1, Z_i)$ 



### Stochastic block-model

Poisson model. (no covariate)

- ▶  $\{Z_i\}$  iid  $\sim \mathcal{M}(1,\pi)$
- $Y_{ij} \sim \mathcal{P}\left(e^{\alpha_{Z_i Z_j}}\right)$
- $\rightarrow$  The  $Z_i$  are marginally independent

Moralization. [Lau96]

$$p(Z_i, Z_j \mid Y_{ij}) = \frac{p(Z_i)p(Z_j)p(Y_{ij} \mid Z_i, Z_j)}{p(Y_{ij})}$$

does not factorize in  $(Z_i, Z_j)$ .

#### Moralization for all pairs



### Stochastic block-model

Poisson model. (no covariate)

- ▶  $\{Z_i\}$  iid  $\sim \mathcal{M}(1,\pi)$
- $\blacktriangleright \ Y_{ij} \sim \mathcal{P}\left(e^{\alpha_{Z_i Z_j}}\right)$
- $\rightarrow$  The  $Z_i$  are marginally independent

Moralization. [Lau96]

$$p(Z_i, Z_j \mid Y_{ij}) = \frac{p(Z_i)p(Z_j)p(Y_{ij} \mid Z_i, Z_j)}{p(Y_{ij})}$$

does not factorize in  $(Z_i, Z_j)$ .

 $\rightarrow$  The  $Z_i$  are all conditionally dependent

### Conditional graphical model



### Outline

Incomplete data models

Variational EM

Variational Bayes EM

Variational inference

Problem.  $p_{\theta}(Z \mid Y)$  being intractable, we look for a 'good' approximation of it:

$$q(Z) \approx p_{\theta}(Z \mid Y)$$

More specifically, given

Problem.  $p_{\theta}(Z \mid Y)$  being intractable, we look for a 'good' approximation of it:

$$q(Z) \approx p_{\theta}(Z \mid Y)$$

More specifically, given

 $\blacktriangleright$  a set of approximating distributions  ${\cal Q}$  and

Problem.  $p_{\theta}(Z \mid Y)$  being intractable, we look for a 'good' approximation of it:

$$q(Z) \approx p_{\theta}(Z \mid Y)$$

#### More specifically, given

- ightharpoonup a set of approximating distributions  $\mathcal Q$  and
- a divergence measure D[q||p],

Problem.  $p_{\theta}(Z \mid Y)$  being intractable, we look for a 'good' approximation of it:

$$q(Z) \approx p_{\theta}(Z \mid Y)$$

#### More specifically, given

- ightharpoonup a set of approximating distributions Q and
- ▶ a divergence measure D[q||p],

we look for

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- ▶ loopy belief propagation [MWJ99]
- ▶ minimization of Bethe's free energy [YFW01]

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- ▶ loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

#### Choice of the divergence measure.

► Most popular choice = Küllback-Leibler:

$$D[q||p] = KL[q||p] = \mathbb{E}_q \log (q/p)$$

 $\rightarrow$  the error  $\log(q/p)$  is averaged wrt the approximation q itself

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- ▶ loopy belief propagation [MWJ99]
- ▶ minimization of Bethe's free energy [YFW01]

#### Choice of the divergence measure.

► Most popular choice = Küllback-Leibler:

$$D[q||p] = KL[q||p] = \mathbb{E}_q \log (q/p)$$

- $\rightarrow$  the error  $\log(q/p)$  is averaged wrt the approximation q itself
- ightharpoonup Expectation propagation (EP, [Min01]): D[q||p] = KL[p||q]
  - → more sensible, but requires integration wrt p

References. Huge literature; see [WJ08] for a general introduction or [BKM17] for a more recent and concise review

Not all methods enter the framework described above

- ▶ loopy belief propagation [MWJ99]
- minimization of Bethe's free energy [YFW01]

#### Choice of the divergence measure.

► Most popular choice = Küllback-Leibler:

$$D[q||p] = KL[q||p] = \mathbb{E}_q \log (q/p)$$

- $\rightarrow$  the error  $\log(q/p)$  is averaged wrt the approximation q itself
- ightharpoonup Expectation propagation (EP, [Min01]): D[q||p] = KL[p||q]
  - → more sensible, but requires integration wrt p
- Many others (see e.g. [Min05])

In a nutshell: replace the E step with an approximation ('VE') step

 $<sup>^{1}</sup>$ Actually log-evidence, as the evidence is p(Y)

In a nutshell: replace the E step with an approximation ('VE') step

'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - \mathit{KL}\left[q(Z) \| p_{\theta}(Z \mid Y)\right]$$

<sup>&</sup>lt;sup>1</sup>Actually log-evidence, as the evidence is p(Y)

In a nutshell: replace the E step with an approximation ('VE') step

'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - KL[q(Z) || p_{\theta}(Z \mid Y)]$$

VEM algorithm.

VE step: maximize  $J_{\theta,q}(Y)$  wrt q

M step: maximize  $J_{\theta,q}(Y)$  wrt  $\theta$ 

<sup>&</sup>lt;sup>1</sup>Actually log-evidence, as the evidence is p(Y)

In a nutshell: replace the E step with an approximation ('VE') step

'Evidence lower bound' (ELBO) = lower bound of the log-likelihood:

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - \mathit{KL}\left[q(Z) \| p_{\theta}(Z \mid Y)\right]$$

VEM algorithm.

VE step: maximize  $J_{\theta,q}(Y)$  wrt q

M step: maximize  $J_{\theta,q}(Y)$  wrt  $\theta$ 

Property:  $J_{\theta,q}(Y)$  increases at each step.

<sup>&</sup>lt;sup>1</sup>Actually log-evidence, as the evidence is p(Y)

The ELBO can written in two ways:

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - KL [q(Z) || p_{\theta}(Z | Y)]$$
$$= \mathbb{E}_q \log p_{\theta}(Y, Z) - \mathbb{E}_q \log q(Z)$$

→ See #33

The ELBO can written in two ways:

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - KL [q(Z) || p_{\theta}(Z | Y)]$$
$$= \mathbb{E}_q \log p_{\theta}(Y, Z) - \mathbb{E}_q \log q(Z)$$

→ See #33

#### VEM algorithm.

► VE step (approximation):

$$q^{h+1} = \underset{q \in \mathcal{Q}}{\operatorname{arg \, min}} \ KL\left[q(Z) \| p_{\theta^h}(Z \mid Y)\right]$$

► M step (parameter update):

$$heta^{h+1} = rg \max_{ heta} \; \mathbb{E}_{q^{h+1}} \log p_{ heta}(Y, Z)$$

We have that

$$\log p_{\theta}(Y) = \mathbb{E}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}[\log p_{\theta}(Z \mid Y) \mid Y]$$
(EM)

$$J_{\theta,q}(Y) = \mathbb{E}_q[\log p_{\theta}(Y,Z)] - \mathbb{E}_q[\log q(Z)]$$
 (VEM)

We have that

$$\log p_{\theta}(Y) = \mathbb{E}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}[\log p_{\theta}(Z \mid Y) \mid Y]$$
(EM)

$$J_{\theta,q}(Y) = \mathbb{E}_q[\log p_{\theta}(Y,Z)] - \mathbb{E}_q[\log q(Z)] \tag{VEM}$$

Both are the same iff 
$$q(Z) = p_{\theta}(Z \mid Y)$$
 (as  $\mathit{KL}\left[q^{h+1}(Z) \| p_{\theta^h}(Z \mid Y)\right] = 0$ )

We have that

$$\log p_{\theta}(Y) = \mathbb{E}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}[\log p_{\theta}(Z \mid Y) \mid Y]$$
(EM)

$$J_{\theta,q}(Y) = \mathbb{E}_q[\log p_{\theta}(Y,Z)] - \mathbb{E}_q[\log q(Z)] \tag{VEM}$$

- Both are the same iff  $q(Z) = p_{\theta}(Z \mid Y)$  (as  $\mathit{KL}\left[q^{h+1}(Z) \| p_{\theta^h}(Z \mid Y)\right] = 0$ )
- ▶ This happens when Q is unrestricted, that is

$$q^{h+1}(Z) = \underset{q}{\operatorname{arg\,min}} \ \operatorname{\mathit{KL}}\left[q(Z) \| p_{\theta^h}(Z \mid Y) \right] = p_{\theta^h}(Z \mid Y)$$

We have that

$$\log p_{\theta}(Y) = \mathbb{E}[\log p_{\theta}(Y, Z) \mid Y] - \mathbb{E}[\log p_{\theta}(Z \mid Y) \mid Y]$$
(EM)

$$J_{\theta,q}(Y) = \mathbb{E}_q[\log p_{\theta}(Y,Z)] - \mathbb{E}_q[\log q(Z)] \tag{VEM}$$

- ▶ Both are the same iff  $q(Z) = p_{\theta}(Z \mid Y)$  (as  $KL\left[q^{h+1}(Z) \| p_{\theta^h}(Z \mid Y)\right] = 0$ )
- ► This happens when Q is unrestricted, that is

$$q^{h+1}(Z) = \underset{q}{\operatorname{arg \, min}} \ \operatorname{KL}\left[q(Z) \| p_{\theta^h}(Z \mid Y)\right] = p_{\theta^h}(Z \mid Y)$$

► This provides us with a second proof of EM's main property

Choice of the approximation class. A popular choice is

$$\mathcal{Q}_{\mathsf{fact}} = \{\mathsf{factorable} \ \mathsf{distributions}\} = \{q: q(Z) = \prod_i q_i(Z_i)\}$$

Choice of the approximation class. A popular choice is

$$\mathcal{Q}_{\mathsf{fact}} = \{\mathsf{factorable} \; \mathsf{distributions}\} = \{q: q(Z) = \prod_i q_i(Z_i)\}$$

Property. For a given distribution p(Z),

$$q^* = \underset{q \in \mathcal{Q}_{\mathsf{fact}}}{\mathsf{arg\,min}} \ \mathsf{KL}[q \| p]$$

satisfies

$$q_i^*(Z_i) \propto \exp\left(\mathbb{E}_{\bigotimes_{j \neq i} q_j^*} \log p(Z)\right)$$

→ Proof in [Bea03] (sketch in #34)

Choice of the approximation class. A popular choice is

$$\mathcal{Q}_{\mathsf{fact}} = \{\mathsf{factorable} \; \mathsf{distributions}\} = \{q: q(\mathsf{Z}) = \prod_i q_i(\mathsf{Z}_i)\}$$

Property. For a given distribution p(Z),

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{Q}_{\mathrm{fact}}} \mathit{KL}[q \| p]$$

satisfies

$$q_i^*(Z_i) \propto \exp\left(\mathbb{E}_{\bigotimes_{j \neq i} q_j^*} \log p(Z)\right)$$

- → Proof in [Bea03] (sketch in #34)
  - lackbrack log  $q_i^*(Z_i)$  is obtained by setting the  $\{Z_j\}_{j \neq i}$  'to their respective mean' (each wrt to  $q_j^*$ ).

#### Outline

Incomplete data models

Variational EN

Variational Bayes EM

Variational inference

Bayesian setting: The parameters in  $\boldsymbol{\theta}$  are random

(no latent variable yet)

Bayesian setting: The parameters in  $\boldsymbol{\theta}$  are random

(no latent variable yet)

▶ 'Prior' = marginal distribution of the parameter

 $p(\theta)$ 

Bayesian setting: The parameters in  $\boldsymbol{\theta}$  are random

(no latent variable yet)

'Prior' = marginal distribution of the parameter

$$p(\theta)$$

'Likelihood' = conditional distribution of the observations

$$p(Y \mid \theta)$$

#### Bayesian setting: The parameters in $\theta$ are random

(no latent variable yet)

▶ 'Prior' = marginal distribution of the parameter

$$p(\theta)$$

'Likelihood' = conditional distribution of the observations

$$p(Y \mid \theta)$$

▶ 'Posterior' = conditional distribution of the parameters given the data

$$p(\theta \mid Y) = \frac{p(\theta)p(Y \mid \theta)}{\int p(\theta)p(Y \mid \theta) d\theta}$$

 ${\color{red}\textbf{Ideal case:}} \ \, \textbf{Explicit posterior} \, \rightarrow \, \, \textbf{Conjugate priors}$ 

 ${\sf Ideal\ case} \colon {\sf Explicit\ posterior} \to \ {\sf Conjugate\ priors}$ 

Most of the time: No explicit form for  $p(\theta \mid Y)$ 

Ideal case: Explicit posterior  $\rightarrow$  Conjugate priors

Most of the time: No explicit form for  $p(\theta \mid Y)$ 

► Sample from it, i.e. try to get

$$\{\theta^b\}_{1\leq b\leq B}\stackrel{\mathsf{iid}}{pprox} p(\theta\mid Y)$$

 $\rightarrow$  Monte-Carlo (MC), MCMC, SMC, HMC, ...

Ideal case: Explicit posterior → Conjugate priors

Most of the time: No explicit form for  $p(\theta \mid Y)$ 

► Sample from it, i.e. try to get

$$\{\theta^b\}_{1\leq b\leq B}\stackrel{\mathsf{iid}}{pprox} p(\theta\mid Y)$$

- $\rightarrow$  Monte-Carlo (MC), MCMC, SMC, HMC, ...
- Approximate it, i.e. look for

$$q(\theta) \simeq p(\theta \mid Y)$$

 $\rightarrow$  Variational Bayes (VB) [Att00]

Ideal case: Explicit posterior  $\rightarrow$  Conjugate priors

Most of the time: No explicit form for  $p(\theta \mid Y)$ 

► Sample from it, i.e. try to get

$$\{\theta^b\}_{1\leq b\leq B}\stackrel{\mathsf{iid}}{pprox} p(\theta\mid Y)$$

- $\rightarrow$  Monte-Carlo (MC), MCMC, SMC, HMC, ...
- Approximate it, i.e. look for

$$q(\theta) \simeq p(\theta \mid Y)$$

→ Variational Bayes (VB) [Att00]

Example. Consider  $\mathcal{N} = \{Gaussian distributions\}$ 

$$q^*(\theta) = \underset{q \in \mathcal{N}}{\operatorname{arg\,min}} \ \mathit{KL}[q(\theta) \mid p(\theta \mid Y)]$$

(or  $KL[p(\theta \mid Y) \mid q(\theta)]$ )

# Including latent variables

#### Bayesian model with latent variables.

$$\theta \sim p(\theta)$$
 $Z \sim p(Z \mid \theta)$ 
 $Y \sim p(Y \mid \theta, Z)$ 

prior distribution latent variables observed variables

## Including latent variables

Bayesian model with latent variables.

| $	heta \sim p(	heta)$        | prior distribution |
|------------------------------|--------------------|
| $Z \sim p(Z \mid 	heta)$     | latent variables   |
| $Y \sim p(Y \mid \theta, Z)$ | observed variables |

Aim of Bayesian inference. Determine the joint conditional distribution

$$p(\theta, Z \mid Y) = \frac{p(\theta) \ p(Z \mid \theta) \ p(Y \mid \theta, Z)}{p(Y)}$$

where

$$p(Y) = \int \int p(\theta) \ p(Z \mid \theta) \ p(Y \mid \theta, Z) \ d\theta \ dZ$$

is most often intractable

Variational approximation of the joint conditional  $p(\theta, Z \mid Y)$ 

$$q(\theta, Z) = \underset{q \in \mathcal{Q}}{\text{arg min}} \ \textit{KL}[q(\theta, Z) \| p(\theta, Z \mid Y)]$$

taking 
$$\mathcal{Q} = \mathcal{Q}_{\mathsf{fact}} = \{q: q(\theta, Z) = q_{\theta}(\theta)q_{Z}(Z)\}$$
 [Bea03,BG03]

Variational approximation of the joint conditional  $p(\theta, Z \mid Y)$ 

$$q(\theta, Z) = \underset{q \in \mathcal{Q}}{\text{arg min}} \ \textit{KL}[q(\theta, Z) \| p(\theta, Z \mid Y)]$$

taking 
$$\mathcal{Q} = \mathcal{Q}_{\mathsf{fact}} = \{q: q(\theta, Z) = q_{\theta}(\theta)q_{Z}(Z)\}$$
 [Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

Variational approximation of the joint conditional  $p(\theta, Z \mid Y)$ 

$$q(\theta, Z) = \underset{q \in \mathcal{Q}}{\text{arg min}} \ \textit{KL}[q(\theta, Z) \| p(\theta, Z \mid Y)]$$

taking 
$$\mathcal{Q} = \mathcal{Q}_{\mathsf{fact}} = \{q: q(\theta, Z) = q_{\theta}(\theta)q_{Z}(Z)\}$$
 [Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

▶ VBE step = update of the latent variable distribution

$$q_Z^{h+1}(Z) \propto \exp\left(\mathbb{E}_{q_{\theta}^h} \log p(Y, Z, \theta)\right)$$

Variational approximation of the joint conditional  $p(\theta, Z \mid Y)$ 

$$q(\theta, Z) = \underset{q \in \mathcal{Q}}{\text{arg min}} \ \textit{KL}[q(\theta, Z) \| p(\theta, Z \mid Y)]$$

taking 
$$\mathcal{Q} = \mathcal{Q}_{\mathsf{fact}} = \{q: q(\theta, Z) = q_{\theta}(\theta)q_{Z}(Z)\}$$
 [Bea03,BG03]

Variational Bayes EM (VBEM) algorithm. Makes use of the mean-field approximation

▶ VBE step = update of the latent variable distribution

$$q_Z^{h+1}(Z) \propto \exp\left(\mathbb{E}_{q_{\theta}^h} \log p(Y, Z, \theta)\right)$$

▶ VBM step = update of the parameter distribution

$$q_{ heta}^{h+1}( heta) \propto \exp\left(\mathbb{E}_{q_{Z}^{h+1}}\log p(Y, Z, heta)
ight)$$

# VBEM in practice

Exponential family / conjugate prior. If

 $p(Y, Z \mid \theta)$  belongs to the exponential family

and  $p(\theta)$  is the corresponding conjugate prior

then both the VBE and VBM steps are completely explicit  $[{\sf BG03}]$ 

# VBEM in practice

Exponential family / conjugate prior. If

 $p(Y, Z \mid \theta)$  belongs to the exponential family

and  $p(\theta)$  is the corresponding conjugate prior

then both the VBE and VBM steps are completely explicit [BG03]

#### Many VBEM's.

- ightharpoonup Force further factorization among the Z (see e.g. [LBA12,GDR12,KBCG15] for block-models)
- Use further approximations when conjugacy does not hold [JJ00]

### Outline

Incomplete data models

Variational EN

Variational Bayes EM

Variational inference

Variational approximations for conditional distributions  $p_{\theta}(Z \mid Y)$  or  $p(\theta, Z \mid Y)$ 

ightarrow computationally efficient alternative to Monte-Carlo methods

Variational approximations for conditional distributions  $p_{\theta}(Z \mid Y)$  or  $p(\theta, Z \mid Y)$ 

→ computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

ightarrow reasonably easy to implement

Variational approximations for conditional distributions  $p_{\theta}(Z \mid Y)$  or  $p(\theta, Z \mid Y)$ 

→ computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

→ reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models

→ see Part 3 for applications in statistical ecology

Variational approximations for conditional distributions  $p_{\theta}(Z \mid Y)$  or  $p(\theta, Z \mid Y)$ 

→ computationally efficient alternative to Monte-Carlo methods

VEM algorithms are similar to EM algorithms

ightarrow reasonably easy to implement

Variational inference is a versatile framework for the inference of incomplete data models

→ see Part 3 for applications in statistical ecology

Statistical guarantees still need to be established for the resulting estimates

→ see Part 4

#### References I



eal. Variational algorithms for approximate Bayesian inference. PhD thesis, university of London, 2003.



Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39:1–38, 1977.

Zal, J.-J. Daudin, and S. Robin. Accuracy of variational estimates for random graph mixture models. Journal of Statistical Computation and Simulation, 82(6):849–862, 2012.

Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25–37, 2000.

ribin, V. Brault, G. Celeux, and G. Govaert. Estimation and selection for the latent block model on categorical data. Statistics and Computing, 25(6):1201–1216, 2015.

Lauritzen, Graphical Models, Oxford Statistical Science Series, Clarendon Press, 1996.

touche, E. Birmelé, and C. Ambroise. Variational Bayesian inference and complexity control for stochastic block models. Statis. Model., 12(1):93–115,

Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages 362-369. Morgan Kaufmann Publishers Inc., 2001.

Minka, Divergence measures and message passing, Technical Report MSR-TR-2005-173, Microsoft Research Ltd. 2005.

2012.

#### References II



Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1–2):1–305, 2008.

Syedidia, W. T Freeman, and Y. Weiss. Bethe free energy, kikuchi approximations, and belief propagation algorithms. Advances in neural information processing systems, 13, 2001.

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \geq 0.$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that



We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$0 \leq \mathbb{E}_{\theta^h}[\log p_{\theta^{h+1}}(Y,Z) \mid Y] - \mathbb{E}_{\theta^h}[\log p_{\theta^h}(Y,Z) \mid Y]$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$0 \leq \mathbb{E}_{\theta^h}[\log p_{\theta^{h+1}}(Y,Z) \mid Y] - \mathbb{E}_{\theta^h}[\log p_{\theta^h}(Y,Z) \mid Y]$$

$$=\mathbb{E}_{ heta^h}\left[\lograc{p_{ heta^{h+1}}(Y,Z)}{p_{ heta^h}(Y,Z)}\mid Y
ight]$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $heta^{h+1} = \arg\max_{ heta} \mathbb{E}_{ heta^h}[\log p_{ heta}(Y, Z) \mid Y]$ , we have that

$$0 \leq \mathbb{E}_{\theta^h}[\log p_{\theta^{h+1}}(Y,Z) \mid Y] - \mathbb{E}_{\theta^h}[\log p_{\theta^h}(Y,Z) \mid Y]$$

$$= \mathbb{E}_{\theta^h} \left[ \log \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \qquad \leq \log \left( \mathbb{E}_{\theta^h} \left[ \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \right) \qquad \textit{(Jensen)}$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$\begin{split} &0 \leq \mathbb{E}_{\theta^h} \big[ \log p_{\theta^{h+1}}(Y,Z) \mid Y \big] - \mathbb{E}_{\theta^h} \big[ \log p_{\theta^h}(Y,Z) \mid Y \big] \\ &= \mathbb{E}_{\theta^h} \left[ \log \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \qquad \leq \log \left( \mathbb{E}_{\theta^h} \left[ \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \right) \qquad \textit{(Jensen)} \\ &= \log \int \frac{p_{\theta^h}(Y,Z)}{p_{\theta^h}(Y,Z)} \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \, \mathrm{d}Z \end{split}$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$\begin{split} &0 \leq \mathbb{E}_{\theta^h} \big[ \log p_{\theta^{h+1}}(Y,Z) \mid Y \big] - \mathbb{E}_{\theta^h} \big[ \log p_{\theta^h}(Y,Z) \mid Y \big] \\ &= \mathbb{E}_{\theta^h} \left[ \log \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \qquad \leq \log \left( \mathbb{E}_{\theta^h} \left[ \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \right) \qquad \textit{(Jensen)} \\ &= \log \int \frac{p_{\theta^h}(Y,Z)}{p_{\theta^h}(Y)} \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \, \mathrm{d}Z \qquad = \log \left( \frac{1}{p_{\theta^h}(Y)} \int p_{\theta^{h+1}}(Y,Z) \, \mathrm{d}Z \right) \end{split}$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$\begin{split} &0 \leq \mathbb{E}_{\theta^h} \big[ \log p_{\theta^{h+1}}(Y,Z) \mid Y \big] - \mathbb{E}_{\theta^h} \big[ \log p_{\theta^h}(Y,Z) \mid Y \big] \\ &= \mathbb{E}_{\theta^h} \left[ \log \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \qquad \leq \log \left( \mathbb{E}_{\theta^h} \left[ \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \right) \qquad \textit{(Jensen)} \\ &= \log \int \frac{p_{\theta^h}(Y,Z)}{p_{\theta^h}(Y)} \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \, \mathrm{d}Z \qquad = \log \left( \frac{1}{p_{\theta^h}(Y)} \int p_{\theta^{h+1}}(Y,Z) \, \mathrm{d}Z \right) \\ &= \log \frac{p_{\theta^{h+1}}(Y)}{p_{\theta^h}(Y)} \end{split}$$

We have to show that

$$\log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \ge 0.$$

Because  $\theta^{h+1} = \arg\max_{\theta} \mathbb{E}_{\theta^h}[\log p_{\theta}(Y, Z) \mid Y]$ , we have that

$$\begin{split} &0 \leq \mathbb{E}_{\theta^h} \big[ \log p_{\theta^{h+1}}(Y,Z) \mid Y \big] - \mathbb{E}_{\theta^h} \big[ \log p_{\theta^h}(Y,Z) \mid Y \big] \\ &= \mathbb{E}_{\theta^h} \left[ \log \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \qquad \leq \log \left( \mathbb{E}_{\theta^h} \left[ \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \mid Y \right] \right) \qquad \textit{(Jensen)} \\ &= \log \int \frac{p_{\theta^h}(Y,Z)}{p_{\theta^h}(Y)} \frac{p_{\theta^{h+1}}(Y,Z)}{p_{\theta^h}(Y,Z)} \, \mathrm{d}Z \qquad = \log \left( \frac{1}{p_{\theta^h}(Y)} \int p_{\theta^{h+1}}(Y,Z) \, \mathrm{d}Z \right) \\ &= \log \frac{p_{\theta^{h+1}}(Y)}{p_{\theta^h}(Y)} \qquad = \log p_{\theta^{h+1}}(Y) - \log p_{\theta^h}(Y) \end{split}$$

$$J_{\theta,q}(Y) = \log p_{\theta}(Y) - KL[q(Z)||p_{\theta}(Z \mid Y)]$$
 (lower bound)

$$J_{ heta,q}(Y) = \log p_{ heta}(Y) - \mathit{KL}\left[q(Z) \| p_{ heta}(Z \mid Y)
ight]$$
 (lower bound) 
$$= \log p_{ heta}(Y) - \mathbb{E}_q \log \left(q(Z)/p_{ heta}(Z \mid Y)\right)$$

$$egin{aligned} J_{ heta,q}(Y) &= \log p_{ heta}(Y) - \mathit{KL}\left[q(Z) \| p_{ heta}(Z \mid Y)
ight] \end{aligned} \end{aligned} \qquad ext{(lower bound)}$$
 
$$= \log p_{ heta}(Y) - \mathbb{E}_q \log \left(q(Z) / p_{ heta}(Z \mid Y)
ight)$$
 
$$= \log p_{ heta}(Y) - \mathbb{E}_q \log \left(\frac{q(Z) p_{ heta}(Y)}{p_{ heta}(Y,Z)}
ight)$$

$$\begin{split} J_{\theta,q}(Y) &= \log p_{\theta}(Y) - \mathit{KL}\left[q(Z) \| p_{\theta}(Z \mid Y)\right] & \text{(lower bound)} \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log \left(q(Z) / p_{\theta}(Z \mid Y)\right) \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log \left(\frac{q(Z) p_{\theta}(Y)}{p_{\theta}(Y,Z)}\right) \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log q(Z) - \mathbb{E}_q \log p_{\theta}(Y) + \mathbb{E}_q \log p_{\theta}(Y,Z) \end{split}$$

$$\begin{split} J_{\theta,q}(Y) &= \log p_{\theta}(Y) - \mathit{KL}\left[q(Z) \| p_{\theta}(Z \mid Y)\right] & \text{(lower bound)} \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log \left(q(Z) / p_{\theta}(Z \mid Y)\right) \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log \left(\frac{q(Z) p_{\theta}(Y)}{p_{\theta}(Y, Z)}\right) \\ &= \log p_{\theta}(Y) - \mathbb{E}_q \log q(Z) - \mathbb{E}_q \log p_{\theta}(Y) + \mathbb{E}_q \log p_{\theta}(Y, Z) \\ &= \mathbb{E}_q \log p_{\theta}(Y, Z) \underbrace{- \mathbb{E}_q \log q(Z)}_{\text{entropy } \mathcal{H}(q)} \end{split}$$

 $\blacktriangleright$  We know that the function  $q_1$  that minimizes

$$F(q_1) = \int L(z_1, q_1(z_1)) dz_1$$

satisfies (see #35 or [Bea03])

$$\partial q_1(z_1) \ L(z_1,q_1(z_1)) = 0$$

 $\blacktriangleright$  We know that the function  $q_1$  that minimizes

$$F(q_1) = \int L(z_1, q_1(z_1)) dz_1$$

satisfies (see #35 or [Bea03])

$$\partial q_1(z_1) L(z_1, q_1(z_1)) = 0$$

▶ Let us consider  $z = (z_1, z_2)$ ,  $q(z) = q_1(z_1)q_2(z_2)$ 

ightharpoonup We know that the function  $q_1$  that minimizes

$$F(q_1) = \int L(z_1, q_1(z_1)) dz_1$$

satisfies (see #35 or [Bea03])

$$\partial q_1(z_1) L(z_1,q_1(z_1)) = 0$$

Let us consider  $z = (z_1, z_2)$ ,  $q(z) = q_1(z_1)q_2(z_2)$  and define

$$L(z_1, q_1(z_1)) = q_1(z_1) \int q_2(z_2) \log \frac{q_1(z_1)q_2(z_2)}{p(z)} dz_2 \Rightarrow F(q_1) = KL[q||p|].$$

ightharpoonup We know that the function  $q_1$  that minimizes

$$F(q_1) = \int L(z_1, q_1(z_1)) dz_1$$

satisfies (see #35 or [Bea03])

$$\partial q_1(z_1) L(z_1,q_1(z_1)) = 0$$

Let us consider  $z=(z_1,z_2),\ q(z)=q_1(z_1)q_2(z_2)$  and define

$$L(z_1, q_1(z_1)) = q_1(z_1) \int q_2(z_2) \log \frac{q_1(z_1)q_2(z_2)}{p(z)} dz_2 \Rightarrow F(q_1) = KL[q||p|].$$

Observe that

$$\partial q_1(z_1) \ L(z_1, q_1(z_1)) = \log q_1(z_1) - \int q_2(z_2) \log p(z) \ dz_2 + \text{cst}$$

Consider

$$F(q) = \int L(z, q(z)) dz$$

Consider

$$F(q) = \int L(z, q(z)) dz$$

 $\triangleright$  q is optimal if, for any function h,

$$\left.\partial_t F(q+th)\right|_{t=0}=0$$

Consider

$$F(q) = \int L(z, q(z)) dz$$

ightharpoonup q is optimal if, for any function h,

$$\left.\partial_t F(q+th)\right|_{t=0}=0$$

Observe that

$$\partial_t F(q+th) = \int h(z) \, \partial_{q(z)} L(z,q(z)) \, dz$$

Consider

$$F(q) = \int L(z, q(z)) dz$$

ightharpoonup q is optimal if, for any function h,

$$\left.\partial_t F(q+th)\right|_{t=0}=0$$

Observe that

$$\partial_t F(q+th) = \int h(z) \, \partial_{q(z)} L(z,q(z)) \, dz$$

This must be zero for any function h, meaning that

$$\partial_{q(z)}L(z,q(z))\equiv 0.$$