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Outline

1 – Models with latent variables in ecology (statistical ecology)

2 – Variational inference for incomplete data models (statistics)

3 – Variational inference for species abundances and network models (statistical ecology)

4 – Beyond variational inference (statistics)
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Part 1

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models
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Models with latent variables in (community) ecology

Community ecology

A community is a group [. . . ] of populations of [. . . ] different species occupying the same
geographical area at the same time. [Wikipedia]

Community ecology [. . . ] is the study of the interactions between species in communities [. . . ].
[Wikipedia]

Need for statistical models to

I decipher / describe / evaluate
abiotic interactions: environmental effects on species
biotic interactions: between-species interactions

→ joint species distribution models

I describe / understand the organisation of species interaction networks

→ network models
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Joint species distribution models
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Joint species distribution models

Species abundance data

Fish species in Barents sea [FNA06]:

I 89 sites (stations)

I 30 fish species

I 4 covariates

Data:

I Yij = abundance of species j in site i

I xi = vector of covariates for site i

Questions:

I Do environmental conditions affect species
abundances? (abiotic)

I Do species abundances vary independently?
(biotic)

Abundance table:
Hi.pl An.lu Me.ae . . .

31 0 108
4 0 110

27 0 788
13 0 295
23 0 13
20 0 97

. . .

Environmental covariates:
Lat. Long. Depth Temp.

71.10 22.43 349 3.95
71.32 23.68 382 3.75
71.60 24.90 294 3.45
71.27 25.88 304 3.65
71.52 28.12 384 3.35
71.48 29.10 344 3.65

. . . .
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Joint species distribution models

Modelling species abundance

Multivariate count distributions:

I Gaussian models do not fit

I Not that many models for count data without restriction on the dependency [IYAR17]

I Many joint species distribution models (JSDM) resort to a latent layer
[WBO+15,OTD+17,PHW18]

Poisson log-normal (PLN) model: [AH89]

I Zi = latent vector associated with site i : {Zi}1≤i≤n iid

Zi ∼ Np(0,Σ)

I Yij = observed abundance for species j in site i : {Yij}1≤i≤n,1≤j≤p independent | {Zi}

Yij ∼ P(exp(xᵀi βj + Zij ))

I Unknown parameters
θ = (β,Σ)
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Joint species distribution models

(Directed) Graphical model

Definition: p(U1, . . .Uk ) factorizes according to the directed acyclic graph G = ([k],E) iff

p(U1, . . .Uk ) =
k∏

h=1

p(Uh | UparentG (h))

[Lau96] (not necessarily unique factorisation)

Graphical model for PLN: Independent sites + conditionally independent abundances1

pθ
(
{Zi}, {Yij}

)
=
∏
i

pΣ(Zi )×
∏
j

pβ(Yij | Zi ; xi )

Z1 Zi Zn

Y11 Y1j Y1p Yi1 Yij Yip Yn1 Ynj Ynp

1Only random variables appears as nodes, covariates in X are considered as fixed
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Joint species distribution models

Barents’ fishes

Data:

I n = 89 sites, p = 30 species, d = 4
covariates

I Abundance table: Y = [Yij ] (n × p)

I Covariate table: X = [xik ] (n × d)

Interpretation:

I β = regression coefficients
→ abiotic effects

I Σ = variance of the latent layer
→ biotic associations

Regression coefficients β̂: abiotic
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Joint species distribution models

Some properties of the Poisson log-normal distribution

Denoting Σ = [σjk ],

I Expectation (prediction):

E(Yij ) = exp(xᵀi βj + σjj/2) =: µij

I Variance (’over-dispersion’):

V(Yij ) = µij + µ2
ij (e

σjj − 1) > µij

I Covariance:
Cov(Yij ,Yik ) = µijµik (eσjk − 1)

→ signs are preserved:
sign(σjk ) = sign(Cov(Yij ,Yik ))
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Models for ecological networks

Species networks

Tree network [VPDL08]:

I n = 51 tree species

I Yij = number of fungal parasites shared by
species i and j

I xij = vector of covariates between species i
and j (taxonomic, geographic, genetic
distance)

Questions:

I Is the network ’organized’ in some way?

I Do the covariates contribute to explain the
existence or intensity of the links?

Network (weighted):
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Models for ecological networks

Modelling ecological networks

Models for (weighted) random graphs:

I Need to model the joint distribution p({Yij}) accounting for the network structure

I Latent variable models enable to induce a row-column structure [MR14]

Stochastic block-model (SBM): [HL79,NS01]

I Zi = latent class to which node i belongs: {Zi}1≤i≤n iid

Zi ∼M(1, π = (π1, . . . , πK ))

I Yij = observed value (weight) of edge (i , j): {Yij}1≤i,j≤n independent | {Zi}

Yij ∼ P(exp(xᵀij β + αZiZj
))

I Unknown parameters
θ = (π, β, α) + K
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Models for ecological networks

Directed graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges2

pθ
(
{Zi}, {Yij}

)
=
∏
i

pπ(Zi )×
∏
i,j

pα,β(Yij | Zi ,Zj ; xij )

Z1

ZiZn

Y1iY1n

Yin

2again: no node for the covariates in X , which are fixed
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Models for ecological networks

SBM for the tree network

Data:

I n = 51 species

I Weighted adjacency matrix: Y = [Yij ]

I No covariate (for the time being)

Interpretation:

I π = group proportions

I α = matrix of between-groups intensities

Observed adjacency matrix:
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Models for ecological networks

Many types of block-models

Emission distribution: Edges can be

I Binary (presence/absence): Bernoulli

I Weighted: normal, Poisson, ...

I Multivariate (multiplex): multivariate normal, mixed multivariate distribution

I Dynamic (see Part 3)

Node structure:

I One type of nodes: symmetric or asymmetric SBM

I Two types of nodes: bipartite (see next)

I Several types of nodes: multi-layer network [BHBD19]
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Models for ecological networks

Bipartite networks

Antagonist network [BdOAN+13]:
host × parasites interactions:

I 98 hosts (fish species)

I 52 parasites

Question:
Specialized interactions ?

That is (?)
Could we determine groups of hosts and parasites
that preferentially interacts (or avoid to interact)?

Network:

Adjacency matrix:
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Models for ecological networks

A block-model for bipartite networks

Latent block-model (LBM): [GN05]

I Zi = latent class to which row node i belongs: {Zi}1≤i≤n iid

Zi ∼M(1, π = (π1, . . . , πK ))

I Wj = latent class to which row node j belongs: {Zj}1≤j≤m iid

Wj ∼M(1, ρ = (ρ1, . . . , ρL))

I Yij = observed value (weight) of edge (i , j): {Yij}1≤i,j≤n independent | {Zi}, {Wj}

Yij ∼ B(γZiWj
))

I Unknown parameters
θ = (π, ρ, γ) + (K , L)

S. Robin 1 - Models with latent variables in ecology Luxembourg, Dec’20 19 / 24



Models for ecological networks

A block-model for bipartite networks

Latent block-model (LBM): [GN05]

I Zi = latent class to which row node i belongs: {Zi}1≤i≤n iid

Zi ∼M(1, π = (π1, . . . , πK ))

I Wj = latent class to which row node j belongs: {Zj}1≤j≤m iid

Wj ∼M(1, ρ = (ρ1, . . . , ρL))

I Yij = observed value (weight) of edge (i , j): {Yij}1≤i,j≤n independent | {Zi}, {Wj}

Yij ∼ B(γZiWj
))

I Unknown parameters
θ = (π, ρ, γ) + (K , L)

S. Robin 1 - Models with latent variables in ecology Luxembourg, Dec’20 19 / 24



Models for ecological networks

A block-model for bipartite networks

Latent block-model (LBM): [GN05]

I Zi = latent class to which row node i belongs: {Zi}1≤i≤n iid

Zi ∼M(1, π = (π1, . . . , πK ))
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Models for ecological networks

Graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges

pθ
(
{Zi}, {Wj}, {Yij}

)
=
∏
i

pπ(Zi )×
∏
j

pρ(Wj )×
∏
i,j

pγ(Yij | Zi ,Wj )

Z1

Zi

Zn

W1 Wj Wm

Y11 Y1j Yim

Yi1 Yij Ynj

Yn1 Ynj Ynm
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Models for ecological networks

Latent block-model for the host-parasite network

Antagonist network [BdOAN+13]:
host × parasites interactions:

I m = 98 hosts (fish species)

I n = 52 parasites

I Adjacency matrix: Y = [Yij ]

I No covariate

Interpretation:

I π proportions of the parasite groups

I ρ proportions of the host groups

I γ connectivities between groups of hosts
and parasites

Network:

Adjacency matrix:

20 40 60 80

10
20

30
40

50

hosts

pa
ra

sit
es

S. Robin 1 - Models with latent variables in ecology Luxembourg, Dec’20 21 / 24



Models for ecological networks

Latent block-model for the host-parasite network

Antagonist network [BdOAN+13]:
host × parasites interactions:

I m = 98 hosts (fish species)

I n = 52 parasites

I Adjacency matrix: Y = [Yij ]

I No covariate

Interpretation:

I π proportions of the parasite groups

I ρ proportions of the host groups

I γ connectivities between groups of hosts
and parasites

Network:

Adjacency matrix:

20 40 60 80
10

20
30

40
50

hosts

pa
ra

sit
es

S. Robin 1 - Models with latent variables in ecology Luxembourg, Dec’20 21 / 24



Latent-variable models

Outline

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models
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Latent-variable models

Two latent variable models

Species distribution (PLN) Network structure (SBM)

Observed species abundances: species network:
(Y ) Yij = abundance of species j in

site i
Yij = link intensity between
species i and species j

Covariates environnemental conditions: xi similarities between species: xij
(X ) species traits x ′j species traits x ′i

Latent latent ’position’: group membership:
(Z) Zij latent variable for species j

in site i
Zi = group of species i

Parameters latent covariance (Σ) group proportions (π)
(θ) regression coefficients (β) interactions (α)

regression coefficients (β)
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Latent-variable models

Some differences

Nature of the latent variables:

PLN continuous, multivariate: Zi ∼ N
SBM univariate, discrete: Zi ∼M

Modeling function of the latent variables:

PLN instrumental: comfortable multivariate Gaussian setting
→ no precise ecological interpretation of the Zi

→ focus on the inference of the parameter θ = (β,Σ)

SBM ’mechanistic’: hopefully, species groups have an ecological meaning
→ easier interpretation of the Zi

→ focus on unsupervised classification

Emission distribution: mostly Poisson in these lectures (a lot of count data in ecology)

→ Poisson log-normal and block-models are amendable to any (parametric) distribution
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