1 - Models with latent variables in ecology

S. Robin

INRAE / AgroParisTech / univ. Paris-Saclay Muséum National d'Histoire Naturelle

Winter School on Mathematical Statistics, Luxembourg, Dec'20

Outline

1

1-	Models with latent variables in ecology	(statistical ecology)
2 –	Variational inference for incomplete data models	(statistics)
3-	Variational inference for species abundances and network models	(statistical ecology)
4 –	Beyond variational inference	(statistics)

Models with latent variables in ecology

(statistical acalemy)

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models

Outline

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models

Community ecology

A community is a group [...] of populations of [...] different species occupying the same geographical area at the same time. [Wikipedia]

Community ecology [...] *is the study of the interactions between species in communities* [...]. [Wikipedia]

Community ecology

A community is a group [...] of populations of [...] different species occupying the same geographical area at the same time. [Wikipedia]

Community ecology [...] *is the study of the interactions between species in communities* [...]. [Wikipedia]

Need for statistical models to

- decipher / describe / evaluate abiotic interactions: environmental effects on species biotic interactions: between-species interactions
 - $\rightarrow~$ joint species distribution models

Community ecology

A community is a group $[\ldots]$ of populations of $[\ldots]$ different species occupying the same geographical area at the same time. [Wikipedia]

Community ecology [...] *is the study of the interactions between species in communities* [...]. [Wikipedia]

Need for statistical models to

- decipher / describe / evaluate abiotic interactions: environmental effects on species biotic interactions: between-species interactions
 - \rightarrow joint species distribution models
- describe / understand the organisation of species interaction networks
 - \rightarrow network models

Joint species distribution models

Outline

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models

Species abundance data

Fish species in Barents sea [FNA06]:

- ▶ 89 sites (stations)
- 30 fish species
- 4 covariates

Species abundance data

Fish species in Barents sea [FNA06]:

- 89 sites (stations)
- 30 fish species
- 4 covariates

Data:

• Y_{ij} = abundance of species *j* in site *i*

x_i = vector of covariates for site i

Abundance table:

Hi.pl	An.lu	Me.ae	
31	0	108	
4	0	110	
27	0	788	
13	0	295	
23	0	13	
20	0	97	

Environmental covariates:

Lat.	Long.	Depth	Temp.
71.10	22.43	349	3.95
71.32	23.68	382	3.75
71.60	24.90	294	3.45
71.27	25.88	304	3.65
71.52	28.12	384	3.35
71.48	29.10	344	3.65

Species abundance data

Fish species in Barents sea [FNA06]:

- 89 sites (stations)
- 30 fish species
- 4 covariates

Data:

- Y_{ij} = abundance of species *j* in site *i*
- x_i = vector of covariates for site i

Questions:

- Do environmental conditions affect species abundances? (abiotic)
- Do species abundances vary independently? (biotic)

Abundance table:

Hi.pl	An.lu	Me.ae	
31	0	108	
4	0	110	
27	0	788	
13	0	295	
23	0	13	
20	0	97	

Environmental covariates:

	Lat.	Long.	Depth	Temp.
Î	71.10	22.43	349	3.95
	71.32	23.68	382	3.75
	71.60	24.90	294	3.45
	71.27	25.88	304	3.65
	71.52	28.12	384	3.35
	71.48	29.10	344	3.65

Multivariate count distributions:

- Gaussian models do not fit
- ▶ Not that many models for count data without restriction on the dependency [IYAR17]
- Many joint species distribution models (JSDM) resort to a latent layer [WBO⁺15,OTD⁺17,PHW18]

Multivariate count distributions:

- Gaussian models do not fit
- Not that many models for count data without restriction on the dependency [IYAR17]
- Many joint species distribution models (JSDM) resort to a latent layer [WBO⁺15,OTD⁺17,PHW18]

Poisson log-normal (PLN) model: [AH89]

Multivariate count distributions:

- Gaussian models do not fit
- Not that many models for count data without restriction on the dependency [IYAR17]
- Many joint species distribution models (JSDM) resort to a latent layer [WBO⁺15,OTD⁺17,PHW18]

Poisson log-normal (PLN) model: [AH89]

▶ Z_i = latent vector associated with site *i*: $\{Z_i\}_{1 \le i \le n}$ iid

 $Z_i \sim \mathcal{N}_p(0, \Sigma)$

Multivariate count distributions:

- Gaussian models do not fit
- Not that many models for count data without restriction on the dependency [IYAR17]
- Many joint species distribution models (JSDM) resort to a latent layer [WBO⁺15,OTD⁺17,PHW18]

Poisson log-normal (PLN) model: [AH89]

►
$$Z_i$$
 = latent vector associated with site *i*: $\{Z_i\}_{1 \le i \le n}$ iid

 $Z_i \sim \mathcal{N}_p(0, \Sigma)$

► Y_{ij} = observed abundance for species j in site $i : \{Y_{ij}\}_{1 \le i \le n, 1 \le j \le p}$ independent $|\{Z_i\}$ $Y_{ii} \sim \mathcal{P}(\exp(x_i^T\beta_i + Z_{ii}))$

Multivariate count distributions:

- Gaussian models do not fit
- Not that many models for count data without restriction on the dependency [IYAR17]
- Many joint species distribution models (JSDM) resort to a latent layer [WBO⁺15,OTD⁺17,PHW18]

Poisson log-normal (PLN) model: [AH89]

►
$$Z_i$$
 = latent vector associated with site i : $\{Z_i\}_{1 \le i \le n}$ iid

 $Z_i \sim \mathcal{N}_p(0, \Sigma)$

► Y_{ij} = observed abundance for species j in site $i : \{Y_{ij}\}_{1 \le i \le n, 1 \le j \le p}$ independent $| \{Z_i\}$ $Y_{ij} \sim \mathcal{P}(\exp(x_i^T \beta_j + Z_{ij}))$

Unknown parameters

$$\theta = (\beta, \Sigma)$$

S. Robin

1 - Models with latent variables in ecology

(Directed) Graphical model

Definition: $p(U_1, \ldots, U_k)$ factorizes according to the directed acyclic graph G = ([k], E) iff

$$p(U_1, \dots U_k) = \prod_{h=1}^k p(U_h \mid U_{\mathsf{parent}_G(h)})$$

[Lau96] (not necessarily unique factorisation)

¹Only random variables appears as nodes, covariates in X are considered as fixed

(Directed) Graphical model

Definition: $p(U_1, \ldots, U_k)$ factorizes according to the directed acyclic graph G = ([k], E) iff

$$p(U_1, \dots U_k) = \prod_{h=1}^k p(U_h \mid U_{\mathsf{parent}_G(h)})$$

[Lau96] (not necessarily unique factorisation)

Graphical model for PLN: Independent sites + conditionally independent abundances¹

$$p_{\theta}\left(\{Z_i\},\{Y_{ij}\}\right) = \prod_i p_{\Sigma}(Z_i) \times \prod_j p_{\beta}(Y_{ij} \mid Z_i; \times_i)$$

¹Only random variables appears as nodes, covariates in X are considered as fixed

(Directed) Graphical model

Definition: $p(U_1, \ldots, U_k)$ factorizes according to the directed acyclic graph G = ([k], E) iff

$$p(U_1, \dots U_k) = \prod_{h=1}^k p(U_h \mid U_{\mathsf{parent}_G(h)})$$

[Lau96] (not necessarily unique factorisation)

Graphical model for PLN: Independent sites + conditionally independent abundances¹

1 - Models with latent variables in ecology

¹Only random variables appears as nodes, covariates in X are considered as fixed

Barents' fishes

Data:

- n = 89 sites, p = 30 species, d = 4 covariates
- Abundance table: $Y = [Y_{ij}] (n \times p)$
- Covariate table: $X = [x_{ik}] (n \times d)$

Barents' fishes

Data:

- n = 89 sites, p = 30 species, d = 4 covariates
- Abundance table: $Y = [Y_{ij}] (n \times p)$
- Covariate table: $X = [x_{ik}] (n \times d)$

Regression coefficients $\widehat{\beta}$: abiotic

Interpretation:

- $\beta = \text{regression coefficients}$
 - \rightarrow abiotic effects

Barents' fishes

Data:

- n = 89 sites, p = 30 species, d = 4 covariates
- Abundance table: $Y = [Y_{ij}] (n \times p)$
- Covariate table: $X = [x_{ik}]$ $(n \times d)$

Interpretation:

- $\beta = \text{regression coefficients} \\ \rightarrow \text{ abiotic effects}$
- $\begin{tabular}{ll} Σ = variance of the latent layer $$$$ $$$$ $$$ $$ $$ $$ biotic associations $$ $$ $$$

Regression coefficients $\widehat{\beta}$: abiotic

1 - Models with latent variables in ecology

Luxembourg, Dec'20 10 / 24

Joint species distribution models

Some properties of the Poisson log-normal distribution

Denoting $\Sigma = [\sigma_{jk}]$,

Expectation (prediction):

$$\mathbb{E}(Y_{ij}) = \exp(x_i^{\mathsf{T}}\beta_j + \sigma_{jj}/2) =: \mu_{ij}$$

Some properties of the Poisson log-normal distribution

Denoting $\Sigma = [\sigma_{jk}]$,

Expectation (prediction):

$$\mathbb{E}(Y_{ij}) = \exp(x_i^{\mathsf{T}}\beta_j + \sigma_{jj}/2) =: \mu_{ij}$$

► Variance ('over-dispersion'):

$$\mathbb{V}(Y_{ij})=\mu_{ij}+\mu_{ij}^2(\mathrm{e}^{\sigma_{jj}}-1)$$
 > μ_{ij}

Joint species distribution models

Some properties of the Poisson log-normal distribution

Denoting $\Sigma = [\sigma_{jk}]$,

Expectation (prediction):

$$\mathbb{E}(Y_{ij}) = \exp(x_i^{\mathsf{T}}\beta_j + \sigma_{jj}/2) =: \mu_{ij}$$

Variance ('over-dispersion'):

$$\mathbb{V}(Y_{ij})=\mu_{ij}+\mu_{ij}^2(e^{\sigma_{jj}}-1) > \mu_{ij}$$

Covariance:

$$\mathbb{C}\mathsf{ov}(Y_{ij},Y_{ik}) = \mu_{ij}\mu_{ik}(e^{\sigma_{jk}}-1)$$

 \rightarrow signs are preserved:

$$\operatorname{sign}(\sigma_{jk}) = \operatorname{sign}(\operatorname{\mathbb{C}ov}(Y_{ij}, Y_{ik}))$$

Outline

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models

Species networks

Tree network [VPDL08]:

- \blacktriangleright n = 51 tree species
- Y_{ij} = number of fungal parasites shared by species i and j
- x_{ij} = vector of covariates between species i and j (taxonomic, geographic, genetic distance)

Network (weighted):

Adjacency matrix (counts):

Species networks

Tree network [VPDL08]:

- n = 51 tree species
- Y_{ij} = number of fungal parasites shared by species i and j
- x_{ij} = vector of covariates between species i and j (taxonomic, geographic, genetic distance)

Questions:

- Is the network 'organized' in some way?
- Do the covariates contribute to explain the existence or intensity of the links?

Network (weighted):

Adjacency matrix (counts):

Models for (weighted) random graphs:

- ▶ Need to model the joint distribution $p({Y_{ij}})$ accounting for the network structure
- Latent variable models enable to induce a row-column structure [MR14]

Models for (weighted) random graphs:

- ▶ Need to model the joint distribution $p({Y_{ij}})$ accounting for the network structure
- Latent variable models enable to induce a row-column structure [MR14]

Stochastic block-model (SBM): [HL79,NS01]

Models for (weighted) random graphs:

- ▶ Need to model the joint distribution $p({Y_{ij}})$ accounting for the network structure
- Latent variable models enable to induce a row-column structure [MR14]

Stochastic block-model (SBM): [HL79,NS01]

▶ Z_i = latent class to which node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \dots, \pi_K))$$

Models for (weighted) random graphs:

- ▶ Need to model the joint distribution $p({Y_{ij}})$ accounting for the network structure
- Latent variable models enable to induce a row-column structure [MR14]

Stochastic block-model (SBM): [HL79,NS01]

► Z_i = latent class to which node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

► Y_{ij} = observed value (weight) of edge (i, j): $\{Y_{ij}\}_{1 \le i, j \le n}$ independent | $\{Z_i\}$ $Y_{ij} \sim \mathcal{P}(\exp(x_{ij}^{\top}\beta + \alpha_{Z_i}Z_i))$

Models for (weighted) random graphs:

- ▶ Need to model the joint distribution $p({Y_{ij}})$ accounting for the network structure
- Latent variable models enable to induce a row-column structure [MR14]

Stochastic block-model (SBM): [HL79,NS01]

▶ Z_i = latent class to which node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

•
$$Y_{ij}$$
 = observed value (weight) of edge (i, j) : $\{Y_{ij}\}_{1 \le i, j \le n}$ independent $|\{Z_i\}$

$$Y_{ij} \sim \mathcal{P}(\exp(x_{ij}^{\mathsf{T}}\beta + \alpha_{Z_iZ_j}))$$

Unknown parameters

$$\theta = (\pi, \beta, \alpha) + K$$

Directed graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges²

$$p_{\theta}\left(\{Z_i\},\{Y_{ij}\}\right) = \prod_i p_{\pi}(Z_i) \times \prod_{i,j} p_{\alpha,\beta}(Y_{ij} \mid Z_i, Z_j; \times_{ij})$$

²again: no node for the covariates in X, which are fixed

Directed graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges²

$$p_{\theta}\left(\{Z_i\},\{Y_{ij}\}\right) = \prod_{i} p_{\pi}(Z_i) \times \prod_{i,j} p_{\alpha,\beta}(Y_{ij} \mid Z_i, Z_j; x_{ij})$$

²again: no node for the covariates in X, which are fixed

SBM for the tree network

Data:

- n = 51 species
- ▶ Weighted adjacency matrix: Y = [Y_{ij}]
- No covariate (for the time being)

Observed adjacency matrix:

SBM for the tree network

Data:

- n = 51 species
- Weighted adjacency matrix: $Y = [Y_{ij}]$
- No covariate (for the time being)

Interpretation:

- $\pi = \text{group proportions}$
- $\alpha = matrix$ of between-groups intensities

Observed adjacency matrix:

Clustered matrix:

Many types of block-models

Emission distribution: Edges can be

- Binary (presence/absence): Bernoulli
- Weighted: normal, Poisson, ...
- Multivariate (multiplex): multivariate normal, mixed multivariate distribution
- Dynamic (see Part 3)

Many types of block-models

Emission distribution: Edges can be

- Binary (presence/absence): Bernoulli
- Weighted: normal, Poisson, ...
- Multivariate (multiplex): multivariate normal, mixed multivariate distribution
- Dynamic (see Part 3)

Node structure:

- One type of nodes: symmetric or asymmetric SBM
- Two types of nodes: bipartite (see next)
- Several types of nodes: multi-layer network [BHBD19]

Bipartite networks

Network:

host \times parasites interactions:

- 98 hosts (fish species)
- 52 parasites

Question:

Specialized interactions ?

That is (?)

Could we determine groups of hosts and parasites that preferentially interacts (or avoid to interact)?

Adjacency matrix:

Models for ecological networks

A block-model for bipartite networks

Latent block-model (LBM): [GN05]

Latent block-model (LBM): [GN05]

▶ Z_i = latent class to which row node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

Latent block-model (LBM): [GN05]

▶ Z_i = latent class to which row node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

► W_j = latent class to which row node j belongs: $\{Z_j\}_{1 \le j \le m}$ iid

$$W_j \sim \mathcal{M}(1, \rho = (\rho_1, \ldots, \rho_L))$$

Latent block-model (LBM): [GN05]

► Z_i = latent class to which row node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

▶ W_j = latent class to which row node j belongs: $\{Z_j\}_{1 \le j \le m}$ iid $W_j \sim \mathcal{M}(1, \rho = (\rho_1, \dots, \rho_L))$

► Y_{ij} = observed value (weight) of edge (i, j): $\{Y_{ij}\}_{1 \le i, j \le n}$ independent | $\{Z_i\}, \{W_j\}$ $Y_{ij} \sim \mathcal{B}(\gamma_{Z_iW_j})$)

Latent block-model (LBM): [GN05]

► Z_i = latent class to which row node *i* belongs: $\{Z_i\}_{1 \le i \le n}$ iid

$$Z_i \sim \mathcal{M}(1, \pi = (\pi_1, \ldots, \pi_K))$$

▶ W_j = latent class to which row node j belongs: $\{Z_j\}_{1 \le j \le m}$ iid $W_j \sim \mathcal{M}(1, \rho = (\rho_1, \dots, \rho_L))$

► Y_{ij} = observed value (weight) of edge (i, j): $\{Y_{ij}\}_{1 \le i, j \le n}$ independent | $\{Z_i\}, \{W_j\}$ $Y_{ij} \sim \mathcal{B}(\gamma_{Z_iW_i})$)

Unknown parameters

$$\theta = (\pi, \rho, \gamma) + (K, L)$$

Graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges

$$p_{\theta}\left(\{Z_i\},\{W_j\},\{Y_{ij}\}\right) = \prod_i p_{\pi}(Z_i) \times \prod_j p_{\rho}(W_j) \times \prod_{i,j} p_{\gamma}(Y_{ij} \mid Z_i, W_j)$$

Graphical model

Graphical model for SBM: Independent clusters + conditionally independent edges

$$p_{\theta}\left(\{Z_i\},\{W_j\},\{Y_{ij}\}\right) = \prod_i p_{\pi}(Z_i) \times \prod_j p_{\rho}(W_j) \times \prod_{i,j} p_{\gamma}(Y_{ij} \mid Z_i, W_j)$$

Latent block-model for the host-parasite network

Antagonist network [BdOAN⁺13]:

host \times parasites interactions:

- m = 98 hosts (fish species)
- n = 52 parasites
- Adjacency matrix: Y = [Y_{ij}]
- No covariate

Models for ecological networks

Latent block-model for the host-parasite network

Antagonist network [BdOAN⁺13]:

host \times parasites interactions:

- m = 98 hosts (fish species)
- n = 52 parasites
- Adjacency matrix: Y = [Y_{ij}]
- No covariate

Interpretation:

- π proportions of the parasite groups
- ρ proportions of the host groups
- γ connectivities between groups of hosts and parasites

Network:

Adjacency matrix:

Outline

Models with latent variables in (community) ecology

Joint species distribution models

Models for ecological networks

Latent-variable models

Two latent variable models

	Species distribution (PLN)	Network structure (SBM)
Observed (Y)	species abundances: Y_{ij} = abundance of species j in site i	species network: $Y_{ij} = link$ intensity between species <i>i</i> and species <i>j</i>
Covariates (X)	environnemental conditions: x_i species traits x'_j	similarities between species: x_{ij} species traits x'_i
Latent (Z)	latent 'position': Z_{ij} latent variable for species j in site i	group membership: $Z_i =$ group of species <i>i</i>
Parameters (θ)	latent covariance (Σ) regression coefficients (β)	group proportions (π) interactions (α) regression coefficients (β)

Nature of the latent variables:

PLN continuous, multivariate: $Z_i \sim \mathcal{N}$ SBM univariate, discrete: $Z_i \sim \mathcal{M}$

Nature of the latent variables:

PLN continuous, multivariate: $Z_i \sim \mathcal{N}$ SBM univariate, discrete: $Z_i \sim \mathcal{M}$

Modeling function of the latent variables:

PLN instrumental: comfortable multivariate Gaussian setting

- \rightarrow no precise ecological interpretation of the Z_i
- ightarrow focus on the inference of the parameter $heta=(eta,\Sigma)$

Nature of the latent variables:

PLN continuous, multivariate: $Z_i \sim \mathcal{N}$ SBM univariate, discrete: $Z_i \sim \mathcal{M}$

Modeling function of the latent variables:

PLN instrumental: comfortable multivariate Gaussian setting

- \rightarrow no precise ecological interpretation of the Z_i
- \rightarrow focus on the inference of the parameter $\theta = (\beta, \Sigma)$

SBM 'mechanistic': hopefully, species groups have an ecological meaning

- \rightarrow easier interpretation of the Z_i
- $\rightarrow~$ focus on unsupervised classification

Nature of the latent variables:

PLN continuous, multivariate: $Z_i \sim \mathcal{N}$ SBM univariate, discrete: $Z_i \sim \mathcal{M}$

Modeling function of the latent variables:

PLN instrumental: comfortable multivariate Gaussian setting

- \rightarrow no precise ecological interpretation of the Z_i
- \rightarrow focus on the inference of the parameter $\theta = (\beta, \Sigma)$

SBM 'mechanistic': hopefully, species groups have an ecological meaning

- \rightarrow easier interpretation of the Z_i
- $\rightarrow~$ focus on unsupervised classification

Emission distribution: mostly Poisson in these lectures (a lot of count data in ecology)

ightarrow Poisson log-normal and block-models are amendable to any (parametric) distribution

Backup

References I

Jarchison and C.H Ho. The multivariate Poisson-log normal distribution. <i>Biometrika</i> , 76(4):643–653, 1989.
S 📴 lay, E. F. de Oliveira, M. Almeida-Neto, R. M. Junior, D. P. L.and Takemoto, and J. L. Luque. Developmental stage of parasites influences the
structure of fish-parasite networks. <i>PloS one</i> , 8(10):e75710, 2013.
Bar-Hen, P. Barbillon, and S. Donnet. Block models for multipartite networks. applications in ecology and ethnobiology. Technical Report 1807.10138,
arXiv, 2019. to appear in Statistical Modelling.
pssheim, E. M Nilssen, and M. Aschan. Fish assemblages in the Barents Sea. Marine Biology Research, 2(4):260–269, 2006.
Gepvaert and M. Nadif. An EM algorithm for the block mixture model. IEEE Trans. Pattern Anal. Machine Intel., 27(4):643–7, 2005.
Pur Holland and S. Leinhardt. Structural sociometry. Perspectives on Social Network Research, pages 63–83, 1979.
🔲 nouye, E. Yang, G. I Allen, and P. Ravikumar. A review of multivariate distributions for count data derived from the Poisson distribution.
Computational Statistics, 9(3), 2017.
See Lauritzen. Graphical Models. Oxford Statistical Science Series. Clarendon Press, 1996.
atias and S. Robin. Modeling heterogeneity in random graphs through latent space models: a selective review. ESAIM: Proc., 47:55–74, 2014.
R pwicki and T.A.B. Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association,
96(455):1077–1087, 2001.
💭 vaskainen, G. Tikhonov, D. Dunson, V. Grøtan, S. Engen, BE. Sæther, and N. Abrego. How are species interactions structured in species-rich
communities? a new method for analysing time-series data. Proceedings of the Royal Society B: Biological Sciences, 284(1855):20170768, 2017.
GeoPopovic, F. KC Hui, and D. I Warton. A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165:86–100, 2018.

Backup

References II

Cher, D. Piou, and M.-L. Desprez-Loustau. Architecture of an antagonistic tree/fungus network: The asymmetric influence of past evolutionary history. *PLoS ONE*, 3(3):1740, 2008.

D. Warton, F. G. Blanchet, R. B. O'Hara, O. Ovaskainen, S. Taskinen, S. C Walker, and F. KC. Hui. So many variables: joint modeling in community ecology. Trends in Ecology & Evolution, 30(12):766–779, 2015.