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Motivating example
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Interaction network Edge covariates

Yjj = number of interactions between nodes i and j (count)
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Motivating example

Motivating example

Interaction network Edge covariates

Yjj = number of interactions between nodes i and j (count)

Questions.
> |s there some structure in the network?
> Do the covariates contribute to explain it?

> Do they explain all of the structure? Is there some 'residual’ structure?
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Motivating example

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]
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Motivating example

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Frequentist version.

n nodes (1<i,j<n)

{Z;}; iid ~ Mg (1,7)
{Yij}i<j independent | {Z;}

Yi | (Z; = k, Zj = ) ~ P(exp(ake + x] 8))

Latent variables Z, parameter 0 = (7, o, 3).

Z ={Z;} = node memberships T = group proportions

« = between group interactions [ = effects of the covariates
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Motivating example

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Frequentist version. Bayesian version.
n nodes (1<i,j<n)

{Z;}; iid ~ Mg (1,7) w ~Dg(a)
{Yij}i<j independent | {Z;}

Yij | (Zi =k, Zj = £) ~ P(exp(oe + X 3)) 7 = (a, B) ~ N0, Vo)

Latent variables Z, parameter 0 = (7, o, 3).

Z ={Z;} = node memberships T = group proportions

« = between group interactions [ = effects of the covariates
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Motivating example

Inference of SBM

> Bayesian inference using MCMC: time consuming + convergence issues
> Frequenstist inference via maximum likelihood (ML): intractable
> Variational approximation of ML (VEM): efficient, but with no statistical guaranty

> No easy-to-handle variational Bayes approximation (no conjugacy)
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Motivating example

Inference of SBM

> Bayesian inference using MCMC: time consuming + convergence issues

v

Frequenstist inference via maximum likelihood (ML): intractable

v

Variational approximation of ML (VEM): efficient, but with no statistical guaranty

> No easy-to-handle variational Bayes approximation (no conjugacy)

Aim.
> Design an efficient posterior sampling algorithm taking advantage of the efficiency of
(frequentist) VEM inference
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Variational EM inference

Outline

Variational EM inference
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Variational EM inference

EM and VEM

SBM = incomplete data model
Maximum likelihood. Most popular way: EM

log pg(Y) =E ((logpa(Y,Z) | Y) -E(logpe(Z|Y)|Y)

— Requires to determine (some moments of) py(Z | Y), which is intractable.
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Variational EM inference

EM and VEM

SBM = incomplete data model

Maximum likelihood. Most popular way: EM
log pg(Y) =E ((logpa(Y,Z) | Y) -E(logpe(Z|Y)|Y)

— Requires to determine (some moments of) py(Z | Y), which is intractable.
Variational approximation. When pg(Z | Y) is intractable, rather maximize the ELBO
J(6,9) =logpy(Y) - KL(q(Z2)]pe(Z]Y))
=Eqlogpe(Y,Z) —Eqlogq(Z) < logpe(Y)

taking g € Q.

Mean field. Typical choice for SBM: Q = {q:q(Z) =11, qi(Z;)} (Blockmodels [Légl6]).
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Variational EM inference

Approximate posterior

Taylor expansion. Denote (5, §) = argmaxg qe0 J(0,q) and approximate
log p(6 | Y') o< exp (logw(0) +log pa(Y)) =exp (log7(0) + J(6,7))

~exp (Iogﬂ'(@) £ J@.3) + %(e )T 8,24(0, ) (6 - 5))
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Variational EM inference
Approximate posterior
Taylor expansion. Denote (5, §) = argmaxg qe0 J(0,q) and approximate

log p(6 | Y') o< exp (logw(0) +log pa(Y)) =exp (log7(0) + J(6,7))

~exp (Iogﬂ'(@) £ J@.3) + %(e )T 8,24(0, ) (6 - 5))

Variance proxy for VEM estimates. Set V., := — (8,\(2.](9,6))71 and use conjugacy rules to get

T = (vt + 7)™, E(v) =T (Votvo + Vo '9) ™

and define _ _
B(Y) =N (EM, V()  =p(y|Y).
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Variational EM inference
Approximate posterior
Taylor expansion. Denote (5, §) = argmaxg qe0 J(0,q) and approximate

log p(6 | Y') o< exp (logw(0) +log pa(Y)) =exp (log7(0) + J(6,7))

~exp (Iogﬂ'(@) £ J@.3) + %(e )T 8,24(0, ) (6 - 5))

Variance proxy for VEM estimates. Set V., := — (8,\(2.](9,6))71 and use conjugacy rules to get

T = (vt + 7)™, E(v) =T (Votvo + Vo '9) ™

and define _ _
B(Y) =N (EM, V()  =p(y|Y).

Approximate posterior. Proceed similarly to define 3 and set

F(1)=D@  =p(x|Y),

then combine the two
BO)=B(mB()  ~p(8]Y).
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SMC sampling
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SMC sampling
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SMC sampling

Sampling principle

> pp = proposal, p* = target
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SMC sampling

Sampling principle

> pp = proposal, p* = target

> Intermediate distributions

PO, PL, -y PH =P
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SMC sampling

Sampling principle

step 1: ESS = 0.083

> pp = proposal, p* = target

> Intermediate distributions

PO, PLs -, PH = P

> lteratively:
use pj to get a sample from pp 1
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SMC sampling

Sampling principle

step 2: ESS =0.14

> pp = proposal, p* = target 8

> Intermediate distributions

PO, PLs -, PH = P

> lteratively:
use pj to get a sample from pp 1 °
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SMC sampling

Sampling principle

> pp = proposal, p* = target

> Intermediate distributions
*
PO;P1;---s PH = P

step 3: ESS =0.16

P

> lteratively:
use pj to get a sample from pp 1
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SMC sampling

Sampling principle

step 4: ESS =0.31

> pp = proposal, p* = target Mk
> Intermediate distributions s
PO, PLs -, PH = P .
> lteratively:
use pj to get a sample from pp 1 °-
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SMC sampling

Sampling principle

step 4: ESS =0.31

> pp = proposal, p* = target

> Intermediate distributions .

PO, PLs -, PH = P <

> lteratively:

use pj to get a sample from pp 1 °-

Here. Take pg = p (rather than pg = 7 = prior), p* = p(-| Y)
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SMC sampling

Sequential importance sampling scheme

Denote
U=(0,2), T = prior, ¢ = likelihood
Distribution path: set 0=pg < p1 <+ < py-1 < pH =1,
pr(U) o< BU)' 7 x p(U]Y)""

o< p(U) x r(U)", r(U) = 50
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SMC sampling

Sequential importance sampling scheme

Denote
U=(0,2), T = prior, ¢ = likelihood
Distribution path: set 0=pg < p1 <+ < py-1 < pH =1,

Pr(U) o< BU)' 71 x p(U|Y)"h
m(U)e(Y|U)

o< p(U) x r(U)’h, r(U) = 50)

Sequential sampling. At each step h, provides

En={(U7,wy")}m = weighted sample of py,
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SMC sampling

Sequential importance sampling scheme

Denote
U=(0,2), T = prior, ¢ = likelihood
Distribution path: set 0=pg < p1 <+ < py-1 < pH =1,

Pr(U) o< BU)' 71 x p(U|Y)"h
m(U)e(Y|U)

o< p(U) x r(U)", r(U) = 50)

Sequential sampling. At each step h, provides

En={(U7,wy")}m = weighted sample of py,

Question. How to tune {ps} or H to keep each sampling step efficient?

S. Robin SMC sampling for Poisson SBM Dec.’22, London 11/22



SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1

7o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution pj, (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1

Step h: Using the previous sample £, = {(U]" |, w/";)}

7o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution pj, (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1
Step h: Using the previous sample £, = {(U]" |, w/";)}

1. compute W,’7" = W,’:ll X (r/’{’ll)ph*f’h—l
tuning pp so that cESS(Ep-1; Ph-1,Pn) =71

7o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution pj, (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1
Step h: Using the previous sample £, = {(U]" |, w/";)}

1. compute W,’7" = W,’:ll X (r/’{’ll)ph*f’h—l
tuning pp so that cESS(Ep-1; Ph-1,Pn) =71

2. (1) if ESS, = W%/;f, < 77, resample the particles

7o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution pj, (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1
Step h: Using the previous sample £, = {(U]" |, w/";)}

1. compute W,’7" = W,’:ll X (r/'ﬁl)ﬂh*ﬂhq
tuning pp so that cESS(Ep-1; Ph-1,Pn) =71

2. (1) if ESS, = W%/;f, < 77, resample the particles

3. (®) propagate the particles Uy ~ Ke(UPIu )

7o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution pj, (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Proposed algorithm

Init.: Sample (Ug")m iid ~p, wg" =1
Step h: Using the previous sample £, = {(U]" |, w/";)}

1. compute W,’7" = W,’:ll X (r/'ﬁl)ﬂh*ﬂhq
tuning pp so that cESS(Ep-1; Ph-1,Pn) =71

2. (1) if ESS, = W%/;f, < 77, resample the particles

3. (®) propagate the particles Uy ~ Ke(UPIu )

Stop: When py, reaches 1.

o avoid degeneracy. Weights set to 1 after it.
2K,, has stationary distribution p, (e.g. Gibbs sampler). Only propagation: no convergence needed
S. Robin SMC sampling for Poisson SBM
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SMC sampling

Some comments

Justification of the algorithm [DDJ06]. At each step h, construct a distribution for the whole
particle path with marginal pj.
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SMC sampling

Some comments

Justification of the algorithm [DDJ06]. At each step h, construct a distribution for the whole
particle path with marginal pj.

Conditional ESS. Efficiency of sample £ from pp,_; for distribution pp,

M [Zm W, (rﬂl)ph_ph'lf

T WM (’/11 )2Ph=2ph-1

CESS(Ep-1: Ph-1,Ph) =

> Can be computed for any p, before sampling.

> pp tuned to meet 71, which controls the step size py — pp_1 (and H)
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SMC sampling

Some comments

Justification of the algorithm [DDJ06]. At each step h, construct a distribution for the whole
particle path with marginal pj.

Conditional ESS. Efficiency of sample £ from pp,_; for distribution pp,

M [Zm W, (rﬂl)ph_ph'lf

T WM (’/11 )2Ph=2ph-1

CESS(Ep-1: Ph-1,Ph) =

> Can be computed for any p, before sampling.

> pp tuned to meet 71, which controls the step size py — pp_1 (and H)

Marginal likelihood. An estimate of the marginal likelihoog p(Y') is also available as a side
product.
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SMC sampling

Variational approximation vs prior

Starting from pg = p reduces the number of SMC steps wrt starting from pg = 7.

1.00
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0.00

0 25 75 100

50
lterations (h)

Strategy — SMC from prior -~ SMC from approx

(synthetic data)
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lllustrations ~ Tree network

Outline

lllustrations
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Illustrations  Tree network

Tree network

From [VPDLO8].

n =51 tree species

3 covariates (distances):
taxonomy, geography, genetics

Yjj = number of shared fungal parasites

S. Robin SMC sampling for Poisson SBM

Dec.’22, London

16/



Illustrations Tree network
Sampling path & choice of K

Full model. All covariates

Model selection Sampling path: pp
o
= o
5 /?4 —— -
; @ |
o
] =g
S |
—
! <
he
o
o
o
o
N =3
! T T T T © T T T T T
1 2 3 6 0 5 10 15 20 25

Jk, log(Y | K), ICL(K)

Choosing the number of groups: K = argmaxy B(K | Y)
> Different from arg maxy ICL(K) here.

S. Robin SMC sampling for Poisson SBM Dec.’22, London 17 /22



lllustrations ~ Tree network

Posterior distribution of /3

taxonomy geography genetics
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p(BIK), BBIY,K), B(B|Y)=SkB(K|Y)B(B|Y,K)
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lllustrations ~ Tree network

Posterior distribution of /3

taxonomy

geography

genetics
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-0.65

Correlation between estimates.  (B1,82) (B1,63)  (5B2,53)
B(8) -0.012  0.021  0.318
p(BlY) -0.274 -0.079 -0.088

Model selection. P{x = (taxo., geo.) | Y} =~ 70%,

-060 055  -050

-0'20 -0'15 -010 -005 0.00

-005  0.00

BBIK), BBIY,K), BB|Y)=Skp(K|Y)B(B|Y,K)

S. Robin

SMC sampling for Poisson SBM

P{x = (taxo.) | Y} =~ 30%
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Illustrations Tree network
Residual structure

Between group interactions (ak¢) = 'residuals’ = not explained by the covariates.

3with increasing marginal ¢ (u) = J #(u, v) dv to ensure identifiability.
S. Robin SMC sampling for Poisson SBM Dec.’22, London 19/22



lllustrations ~ Tree network

Residual structure

Between group interactions (ak¢) = 'residuals’ = not explained by the covariates.

'Graphon’ representation. [LRO17]
Group interactions encoded as

¢:[0,1]* » R

> symmetric3,
> block-wise constant,
> block width = 7

v

block height = o

0.0 00

3with increasing marginal ¢ (u) = J #(u, v) dv to ensure identifiability.
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lllustrations ~ Tree network

Residual structure

Between group interactions (ak¢) = 'residuals’ = not explained by the covariates.

'Graphon’ representation. [LRO17]
Group interactions encoded as

¢:[0,1]* » R

> symmetric3,
> block-wise constant,
> block width = 7

v

block height = o

0.0 00

Same representation for all K. Yj|(U;, U;) ~P (exp(qS( Ui, Up) + XUT,B)

3with increasing marginal ¢ (u) = J #(u, v) dv to ensure identifiability.
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Illustrations  Tree network

Tree network residual structure

Residual graphon.
Each particle §™ provides an estimate

of ¢ (u, v)

All estimates can be averaged (over
both m and K)
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lllustrations ~ Tree network

Tree network residual structure

Residual graphon.
Each particle 6™ provides an estimate

of ¢ (u,v)

All estimates can be averaged (over
both m and K)
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lllustrations ~ Tree network

Tree network residual structure

Residual graphon.
Each particle 6™ provides an estimate

of ¢ (u,v)

All estimates can be averaged (over
both m and K)

Interpretation.
> A remaining individual effect (some species interact more than other in average)

> A small fraction of species interact much less than expected.
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Illustrations ~ Equid networks

Social network of equid species

2 datasets [RSF*15].
> n =28 zebras, n =29 onagers

> sex and age (juvenile / adult)
recorded
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Illustrations ~ Equid networks

Social network of equid species

2 datasets [RSF*15].
> n =28 zebras, n =29 onagers

> sex and age (juvenile / adult)
recorded

Model comparison.

Zebras:

P(x=(sex)| Y) =1

Onagers:

P(x = (sex x age) | Y) ~1

S. Robin SMC sampling for Poisson SBM

Dec.’22, London
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Illustrations Equid networks

Social network of equid species

2 datasets [RSF*15].
> n =28 zebras, n =29 onagers

> sex and age (juvenile / adult)
recorded

Model comparison.

Zebras:

P(x=(sex)| Y) =1

Onagers:

0.0

Onager network: residual structure

P(x = (sex x age) | Y) ~1
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Illustrations ~ Equid networks

Discussion

Rational.

> Frequentist VEM side-product can be used to define an approximate posterior

> SMC sampling can start from there to the sample from the posterior
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Illustrations ~ Equid networks

Discussion

Rational.

> Frequentist VEM side-product can be used to define an approximate posterior

> SMC sampling can start from there to the sample from the posterior

Open problems. (About dig data...)

> Louis approximate prior p is not that bad. Still, numerous steps are needed to reach the
posterior
... because of the large dimension of U = (6, Z)

> Especially true for (uselessly) large K
... but VEM inference can not be trusted to choose it

S. Robin SMC sampling for Poisson SBM Dec.’22, London
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Illustrations ~ Equid networks
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Illustrations ~ Equid networks

Theoretical justification

At each step h, [DDJ06] construct a distribution for the whole particle path with marginal py.

> B, (00:p) distribution of the particle path

h
Pr(B0:n) o< pr(0n) TT Lic(Ok-116k)
k-1

» L, = backward kernel

Ly(0h-110n) = Kn(0n10n-1)Pn(On-1)/Pn(h)

> Update for the weights
wh(00:n) = Wh-1(00:p-1)x(0) ™ Fh1
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Illustrations ~ Equid networks

Some comments

Resampling (optional step 3).
> avoids degeneracy

> set weights w;" = 1 after resampling

Propagation kernel K}, (step 4).
> with stationary distribution p;, (e.g. Gibbs sampler)

> just propagation: does not change the distribution — no convergence needed
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Some comments

Resampling (optional step 3).
> avoids degeneracy

> set weights w;" = 1 after resampling

Propagation kernel K}, (step 4).
> with stationary distribution p;, (e.g. Gibbs sampler)

> just propagation: does not change the distribution — no convergence needed

Theoretical justification: [DDJ06]. At each step h, construct a distribution for the whole particle
path with marginal py,.
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Illustrations ~ Equid networks

Marginal likelihood

Denote
W) =By, Zo= [ (W)U, py=1(V)/Zy

The marginal likelihood is given by

p(V) = [ #(U)UYIU) dU= [ (V) dU = Z,

which can be estimated with

BHE) e (E)-prreare

h-1
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Illustrations ~ Equid networks

Conditional dependence between the Z;

The conditional dependency between the latent Z; can be measured at each sampling step by
their mutual information

M - KL(Uph<z;> | ph(2>)-

Part of the effort of the algorithm is dedicated to the recovery of this conditional dependency
structure.
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Illustrations ~ Equid networks

Onager residual structure

Estimated latent coordinate U; € [0, 1] are uncorrelated with covariates

1.0

™
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1 TNLNNT
NNN
R ™

0.6

0.4

0.2

0.0

Individual's status: T = territorial male, N = non-lactating, L = lactating
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