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Yij = number of interactions between nodes i and j (count)

Questions.

▸ Is there some structure in the network?

▸ Do the covariates contribute to explain it?

▸ Do they explain all of the structure? Is there some ’residual’ structure?

S. Robin SMC sampling for Poisson SBM Dec.’22, London 3 / 22



Motivating example

Motivating example

Interaction network Edge covariates

10 20 30 40 50

10
20

30
40

50

10 20 30 40 50

10
20

30
40

50

Yij = number of interactions between nodes i and j (count)

Questions.

▸ Is there some structure in the network?

▸ Do the covariates contribute to explain it?

▸ Do they explain all of the structure? Is there some ’residual’ structure?

S. Robin SMC sampling for Poisson SBM Dec.’22, London 3 / 22



Motivating example

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Frequentist version.

n nodes (1 ≤ i , j ≤ n)

{Zi}i iid ∼MK (1, π)

{Yij}i<j independent ∣ {Zi}

Yij ∣ (Zi = k,Zj = `) ∼ P(exp(αk` + x⊺ij β))

Bayesian version.

π ∼ DK (a)

γ = (α,β) ∼ N(γ0,V0)

Latent variables Z , parameter θ = (π,α, β).

Z = {Zi} = node memberships π = group proportions

α = between group interactions β = effects of the covariates
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Motivating example

Inference of SBM

▸ Bayesian inference using MCMC: time consuming + convergence issues

▸ Frequenstist inference via maximum likelihood (ML): intractable

▸ Variational approximation of ML (VEM): efficient, but with no statistical guaranty

▸ No easy-to-handle variational Bayes approximation (no conjugacy)

Aim.

▸ Design an efficient posterior sampling algorithm taking advantage of the efficiency of
(frequentist) VEM inference
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Variational EM inference

EM and VEM

SBM = incomplete data model

Maximum likelihood. Most popular way: EM

log pθ(Y ) = E ((log pθ(Y ,Z) ∣ Y ) − E (log pθ(Z ∣ Y ) ∣ Y )

→ Requires to determine (some moments of) pθ(Z ∣ Y ), which is intractable.

Variational approximation. When pθ(Z ∣ Y ) is intractable, rather maximize the ELBO

J(θ,q) = log pθ(Y ) −KL (q(Z)∥pθ(Z ∣ Y ))
= Eq log pθ(Y ,Z) − Eq log q(Z) ≤ log pθ(Y )

taking q ∈ Q.

Mean field. Typical choice for SBM: Q = {q ∶ q(Z) = ∏i qi(Zi)} (Blockmodels [Lég16]).
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Variational EM inference

Approximate posterior

Taylor expansion. Denote (θ̃, q̃) = arg maxθ,q∈Q J(θ,q) and approximate

log p(θ ∣ Y ) ∝ exp (logπ(θ) + log pθ(Y ))≃ exp (logπ(θ) + J(θ, q̃))

≃ exp(logπ(θ) + J(θ̃, q̃) + 1

2
(θ − θ̃)⊺∂θ2J(θ, q̃)(θ − θ̃))

Variance proxy for VEM estimates. Set Ṽγ ∶= − (∂γ2J(θ, q̃))−1
and use conjugacy rules to get

Ṽ(γ) = (V −1
0 + Ṽ −1

γ )−1
, Ẽ(γ) = Ṽ(γ)−1 (V −1

0 γ0 + Ṽ −1
γ γ̃)−1

and define
p̃(γ) ∶= N (Ẽ(γ), Ṽ(γ)) ≃ p(γ ∣ Y ).

Approximate posterior. Proceed similarly to define ã and set

p̃(γ) ∶= D(ã) ≃ p(π ∣ Y ),

then combine the two
p̃(θ) ∶= p̃(π)p̃(γ) ≃ p(θ ∣ Y ).
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p̃(γ) ∶= N (Ẽ(γ), Ṽ(γ)) ≃ p(γ ∣ Y ).

Approximate posterior. Proceed similarly to define ã and set
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γ γ̃)−1

and define
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SMC sampling

Sampling principle

▸ p0 = proposal, p∗ = target

▸ Intermediate distributions

p0,p1, ...,pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1
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Here. Take p0 = p̃ (rather than p0 = π = prior), p∗ = p(⋅ ∣ Y )
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SMC sampling

Sampling principle

▸ p0 = proposal, p∗ = target

▸ Intermediate distributions

p0,p1, ...,pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 1: ESS = 0.083
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Here. Take p0 = p̃ (rather than p0 = π = prior), p∗ = p(⋅ ∣ Y )
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▸ p0 = proposal, p∗ = target

▸ Intermediate distributions
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use ph to get a sample from ph+1
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Here. Take p0 = p̃ (rather than p0 = π = prior), p∗ = p(⋅ ∣ Y )
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SMC sampling

Sampling principle

▸ p0 = proposal, p∗ = target

▸ Intermediate distributions

p0,p1, ...,pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 3: ESS = 0.16
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Here. Take p0 = p̃ (rather than p0 = π = prior), p∗ = p(⋅ ∣ Y )
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SMC sampling

Sampling principle

▸ p0 = proposal, p∗ = target

▸ Intermediate distributions

p0,p1, ...,pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 4: ESS = 0.31
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Here. Take p0 = p̃ (rather than p0 = π = prior), p∗ = p(⋅ ∣ Y )
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SMC sampling

Sequential importance sampling scheme

Denote
U = (θ,Z), π = prior, ` = likelihood

Distribution path: set 0 = ρ0 < ρ1 < ⋅ ⋅ ⋅ < ρH−1 < ρH = 1,

ph(U) ∝ p̃(U)1−ρh × p(U ∣Y )ρh

∝ p̃(U) × r(U)ρh , r(U) = π(U)`(Y ∣U)
p̃(U)

Sequential sampling. At each step h, provides

Eh = {(Um
h ,w

m
h )}m = weighted sample of ph

Question. How to tune {ρh} or H to keep each sampling step efficient?
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SMC sampling

Proposed algorithm

Init.: Sample (Um
0 )m iid ∼ p̃, wm

0 = 1

Step h: Using the previous sample Eh−1 = {(Um
h−1,w

m
h−1)}

1. compute wm
h = wm

h−1 × (rmh−1)ρh−ρh−1

tuning ρh so that cESS(Eh−1;ph−1,ph) = τ1

2. (1) if ESSh = w2
h/w2

h < τ2, resample the particles

3. (2) propagate the particles Um
h ∼ Kh(Um

h ∣Um
h−1)

Stop: When ρh reaches 1.

1To avoid degeneracy. Weights set to 1 after it.
2Kh has stationary distribution ph (e.g. Gibbs sampler). Only propagation: no convergence needed
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SMC sampling

Some comments

Justification of the algorithm [DDJ06]. At each step h, construct a distribution for the whole
particle path with marginal ph.

Conditional ESS. Efficiency of sample E from ph−1 for distribution ph

cESS(Eh−1;ph−1,ph) =
M [∑m Wm

h−1 (rmh−1)ρh−ρh−1]2

∑m Wm
h−1

(rm
h−1

)2ρh−2ρh−1

▸ Can be computed for any ρh before sampling.

▸ ρh tuned to meet τ1, which controls the step size ρh − ρh−1 (and H)

Marginal likelihood. An estimate of the marginal likelihoog p(Y ) is also available as a side
product.
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SMC sampling

Variational approximation vs prior

Starting from p0 = p̃ reduces the number of SMC steps wrt starting from p0 = π.
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1.00

0 25 50 75 100

Iterations (h)

ρ
h

Strategy SMC from prior SMC from approx

(synthetic data)
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Illustrations Tree network
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Motivating example

Variational EM inference
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Illustrations Tree network

Tree network

From [VPDL08].

n = 51 tree species

3 covariates (distances):
taxonomy, geography, genetics

Yij = number of shared fungal parasites
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Illustrations Tree network

Sampling path & choice of K

Full model. All covariates

Model selection Sampling path: ρh
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JK , log(Y ∣ K), ĨCL(K)

Choosing the number of groups: K̂ = arg maxK p̂(K ∣ Y )
▸ Different from arg maxK ĨCL(K) here.
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Illustrations Tree network

Posterior distribution of β

taxonomy geography genetics

−0.65 −0.60 −0.55 −0.50

0
5

10
15

20

−0.20 −0.15 −0.10 −0.05 0.00
0

5
10

15
−0.05 0.00 0.05 0.10

0
5

10
15

20

p̃(β ∣ K̂), p̂(β ∣ Y , K̂), p̂(β ∣ Y ) = ∑K p̂(K ∣ Y )p̂(β ∣ Y ,K)

Correlation between estimates. (β1, β2) (β1, β3) (β2, β3)
p̃(β) −0.012 0.021 0.318

p̂(β ∣ Y ) −0.274 −0.079 −0.088

Model selection. P̂{x = (taxo., geo.) ∣ Y } ≃ 70%, P̂{x = (taxo.) ∣ Y } ≃ 30%
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Illustrations Tree network

Residual structure

Between group interactions (αk`) = ’residuals’ = not explained by the covariates.

’Graphon’ representation. [LRO17]

Group interactions encoded as

φ ∶ [0,1]2 ↦ R

▸ symmetric3,

▸ block-wise constant,

▸ block width = πk
▸ block height = αk`
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Same representation for all K . Yij ∣(Ui ,Uj) ∼ P (exp(φ(Ui ,Uj) + x⊺ij β)

3with increasing marginal φ(u) = ∫ φ(u, v) dv to ensure identifiability.
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Illustrations Tree network

Tree network residual structure

Residual graphon.
Each particle θm provides an estimate
of φm(u, v)

All estimates can be averaged (over
both m and K)

Interpretation.

▸ A remaining individual effect (some species interact more than other in average)

▸ A small fraction of species interact much less than expected.
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Illustrations Equid networks

Social network of equid species

2 datasets [RSF+15].

▸ n = 28 zebras, n = 29 onagers

▸ sex and age (juvenile / adult)
recorded

Model comparison.

Zebras:

P̂(x = (sex) ∣ Y ) ≃ 1

Onagers:

P̂(x = (sex × age) ∣ Y ) ≃ 1
Onager network: residual structure
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Illustrations Equid networks

Discussion

Rational.

▸ Frequentist VEM side-product can be used to define an approximate posterior

▸ SMC sampling can start from there to the sample from the posterior

Open problems. (About dig data...)

▸ Louis approximate prior p̃ is not that bad. Still, numerous steps are needed to reach the
posterior
... because of the large dimension of U = (θ,Z)

▸ Especially true for (uselessly) large K
... but VEM inference can not be trusted to choose it
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Illustrations Equid networks
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Illustrations Equid networks

Theoretical justification

At each step h, [DDJ06] construct a distribution for the whole particle path with marginal ph.

▸ ph(θ0∶h) distribution of the particle path

ph(θ0∶h) ∝ ph(θh)
h

∏
k=1

Lk(θk−1∣θk)

▸ Lh = backward kernel

Lh(θh−1∣θh) = Kh(θh ∣θh−1)ph(θh−1)/ph(θh)

▸ Update for the weights
wh(θ0∶h) = wh−1(θ0∶h−1)α(θh)ρh−ρh−1
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Illustrations Equid networks

Some comments

Resampling (optional step 3).

▸ avoids degeneracy

▸ set weights wm
h = 1 after resampling

Propagation kernel Kh (step 4).

▸ with stationary distribution ph (e.g. Gibbs sampler)

▸ just propagation: does not change the distribution → no convergence needed

Theoretical justification: [DDJ06]. At each step h, construct a distribution for the whole particle
path with marginal ph.
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Illustrations Equid networks

Marginal likelihood

Denote
γh(U) = p̃(U)α(U)ρh , Zh = ∫ γh(U) dU, ph = γh(U)/Zh

The marginal likelihood is given by

p(Y ) = ∫ π(U)`(Y ∣U) dU = ∫ γH(U) dU = ZH

which can be estimated with

̂
(ZH

Z0
) =

H

∏
h=1

̂
( Zh

Zh−1
) where

̂
( Zh

Zh−1
) = ∑

m
Wm

h (αm
h )ρh−ρh−1
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Illustrations Equid networks

Conditional dependence between the Zi

The conditional dependency between the latent Zi can be measured at each sampling step by
their mutual information

MI = KL(∏
i

ph(Zi) ∣ ph(Z)) .

Part of the effort of the algorithm is dedicated to the recovery of this conditional dependency
structure.
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Illustrations Equid networks

Onager residual structure

Estimated latent coordinate Ui ∈ [0,1] are uncorrelated with covariates

Individual’s status: T = territorial male, N = non-lactating, L = lactating
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