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Introduction
Spred of an 'epidemics’ [Bsr*19]
Data: n times, p individuals,

Yy = status ('sick’ / 'healthy’) of individual j at time t
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Assumption: 'Contamination’ spreads according to some 'social’ network (not anybody can be
"contaminated’ by anybody)
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Assumption: 'Contamination’ spreads according to some 'social’ network (not anybody can be
"contaminated’ by anybody)

Final aim: Learn something about this network.
For now: Observe that the path of the 'epidemics’ is a tree.
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Reminder on graphical models and trees

Outline

Reminder on graphical models and trees
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Reminder on graphical models and trees

Graphical models

Undirected graphical model [Lau96]: the multivariate distribution p is faithful to the graph G iff

p(V) o ] wel¥©)

CeC(G)

(i.e., iff p can be factorized according to the set C(G) of maximal cliques of G)
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Reminder on graphical models and trees

Graphical models

Undirected graphical model [Lau96]: the multivariate distribution p is faithful to the graph G iff

p(V) o ] wel¥©)

CeC(G)

(i.e., iff p can be factorized according to the set C(G) of maximal cliques of G)

Example:

G e p(Y) o€ P1(Y1, Y2, Y3) (Y3, Ya)

> Connected graph: all variables are dependent

@ @ > Y3 = separator: (Y4 1 (Yl, YQ)) | Y3
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Reminder on graphical models and trees

Tree-shaped graphical model

Spanning tree = acyclic graph connecting all the nodes

spanning trees not spanning
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Reminder on graphical models and trees

Tree-shaped graphical model

Spanning tree = acyclic graph connecting all the nodes

spanning trees

not spanning

Tree-shaped graphical model: p faithful to the spanning tree T

(cliques are only edges)

p(Y)yoc ] (Y Yo

not a tree

— All variables are dependent (spanning) but few are conditionnaly dependent (tree)
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Reminder on graphical models and trees

Maximum likelihood inference

Consider Y ~ p, faithful to T:

log pr(Y) = Z log ¥k (Y], Yk) + cst
U,k)eT

L Actually Y (Vs Yi) = p(Yj, Yi)/ (p(Yj)p(Yk)), so edge weight = mutual information
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Reminder on graphical models and trees

Maximum likelihood inference

Consider Y ~ p, faithful to T:

logpr(Y) =Y. logw(Yj, Yi) + cst
U,k)eT

Suppose each j has a parametric form and that MLEs 121-;( is available.

Tree MLE. Finding

T = argmax log pr(Y)
TeT

amounts to solve a maximum spanning tree problem, where edge (j, k) has weight
log 1jk (Y], Yi)

(Chow & Liu algorithm?: [CL68])

L Actually Y (Vs Yi) = p(Yj, Yi)/ (p(Yj)p(Yk)), so edge weight = mutual information
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Tree shaped distributions and mixtures

Outline

Tree shaped distributions and mixtures

S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 7/20



Tree shaped distributions and mixtures
Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

> Tree marginal distribution: product form

p(T) =871 ] Bi B=> ] B

(,k)ET TeT (j,k)eT
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> Data conditional distribution (likelihood):

Y‘T ijk

U,k)eT

> Data marginal distribution:
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Tree shaped distributions and mixtures
Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

> Tree marginal distribution: product form

p(T) =871 ] Bi B=> ] B

U,k)eT TeT (j,k)eT
> Data conditional distribution (likelihood):

Y‘T ijk

U,k)eT

> Data marginal distribution:

p(Y)= > p(Mp(Y | Ty > ] Bwir(Yi Yao)-

TeT TeT (j,k)eT
U4 wie(Y)
> Tree conditional distribution: product form

p(TIY)=C [] wi(Y), c=> J] wwM.

(,k)eT TeT (j,k)eT
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Tree shaped distributions and mixtures

Summing over trees

We need to sum over the set 7 of spanning trees, but

card (T) = pP~2
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Tree shaped distributions and mixtures

Summing over trees

We need to sum over the set T of spanning trees, but

card (T) = pP~2

Matrix-Tree Theorem (Kirchhoff) [Chag2]. Let W = [wjc] be a symmetric matrix with null
diagonal and A(W), its Laplacian:

AW)j = { vk )=k

—wjx  otherwise

then

S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 9/20



Tree shaped distributions and mixtures

Summing over trees

We need to sum over the set T of spanning trees, but

card (T) = pP~2

Matrix-Tree Theorem (Kirchhoff) [Chag2]. Let W = [wjc] be a symmetric matrix with null
diagonal and A(W), its Laplacian:

AW)j = { vk )=k

—wjx  otherwise
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Tree shaped distributions and mixtures

Summing over trees

We need to sum over the set T of spanning trees, but

card (T) = pP~2

Matrix-Tree Theorem (Kirchhoff) [Chag2]. Let W = [wjc] be a symmetric matrix with null
diagonal and A(W), its Laplacian:

A(W)j :{ Sewi ifj=k

—wjx  otherwise
then

1. all the cofactors [A(W)]“Y of A(W) are equal

2. and
AW = > ] w

TeT (j,k)eT

(i.e.: Y77 can be computed at the price of a determinant: O(p?))
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Tree shaped distributions and mixtures

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge
probabilities:
Pr{(j,k) e T} or Pr{(j,k)e T | Y}.
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Tree shaped distributions and mixtures

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge

probabilities:
Pr{(j, k) e T} or Pr{(j,k)e T|Y}.

Theorem [Kir07]. Denote W2P the same matrix as W but setting w,, = wp, = 0, then

AW = > [T wi

TeT:(a,b)¢T (j,k)eT
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Tree shaped distributions and mixtures

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge

probabilities:
Pr{(j, k) e T} or Pr{(j,k)e T|Y}.

Theorem [Kir07]. Denote W2P the same matrix as W but setting w,, = wp, = 0, then

[awse = [T wi

TeT:(a,b)¢T (j,k)eT

> Gives access to Pr{(j, k) ¢ T} or Pr{(j, k) ¢ T}

> All [A(W?25)]2b can be computed at the price of one matrix inversion: O(p?)
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Spread of an epidemics
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Spread of an epidemics
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Spread of an epidemics
Susceptible-Infected-Susceptible (SIS) model

Data. n times, p individuals

Y. — 1 if individual j is infected at time t
Y7 1 0 otherwise

— Complete observations
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Spread of an epidemics

Susceptible-Infected-Susceptible (SIS) model

Data. n times, p individuals

\£i

— Complete observations

Model. At each time t, each node k

:{(1)

if individual j is infected at time t
otherwise

> picks up a parent j at time t — 1 with probability oc By and,

> denoting ¢J?k =Pr{Yei1,4 | Yek, Yej}, it evolves according to

| Yer1h=0 VYipx=1
YtJ( =1 Yt,j =1 e 1 e
Ytyk—l Yt,j:O e l1—e
Yf,k: Yt,j:]- 1—c C
Yik=0 Y;;=0 1 0

> ¢ = contamination rate

> e = extinction rate (become susceptible again)
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Spread of an epidemics

A tree-shaped path

Adding a fictitious root A (at time 0), a path is a tree T = (T%,..., T"~1):
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Spread of an epidemics

A tree-shaped path

Adding a fictitious root A (at time 0), a path is a tree T = (T%,..., T"~1):

Bl T3]
213

v i

IR\

T] T2 T3

Define Ta the set of oriented spanning tree
> over the nodes A U {(t,k):1<t<n,1<k<p},
> rooted in A,

> with edges connecting only time-adjacent nodes (j # k)

— Ta = set of spanning trees going 'forward’ in time (|7a| = (p — 1)P("=1D)
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Spread of an epidemics
Inference

EM algorithm. Denote
0= (5 = [IBjk]’ €, C)
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Spread of an epidemics

Inference

EM algorithm. Denote
0= (8= I[Bjl e )

E Step: Compute the conditional distribution

n—1 t
_ . w;
p(Ta=(TH...T" 1Y) = i1 g were Wi

t _ .ot
S =30 o Wik = Bik¥ie
TeTa Lle=1 Ll et Wik
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Spread of an epidemics
Inference

EM algorithm. Denote
0= (8= I[Bjl e )

E Step: Compute the conditional distribution

n—1 t
p(Ta = (T ... T Y| V)= i=1 g pere Wi

t _ .ot
S =30 o Wik = Bik¥ie
TeTa Lle=1 Ll et Wik

M Step: Update the parameters as

6 = argmaxE [log pp(Y, T) | Y]
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Spread of an epidemics

Inference

EM algorithm. Denote
0= (8= I[Bjl e )

E Step: Compute the conditional distribution

n—1 t
t=1 H(j,k)eTt Wik

p(Ta=(T...T" | Y) = = - ; whe = Bk
ZTeTA ?:11 H(j,k)eTf Wji ! !

M Step: Update the parameters as

6 = argmaxE [log pp(Y, T) | Y]

Critical step = E step.

> We now need to sum over the (huge) set of rooted oriented trees Ta.

> Hopefully, a alternative version of the matrix-tree theorem enables to sum over all directed
trees (W asymmetric) with given root [Chag2].

S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 14 /20



Spread of an epidemics

An easy situation

w = [Wﬁ(] where V\/fk = /Bjkwjtk:
Edges connect only time-adjacent
nodes
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Spread of an epidemics

An easy situation

w = [Wﬁ(] where V\/fk = /Bjk’ll)jtk:
Edges connect only time-adjacent
nodes

— Laplacian A(W)
is upper triangular

—  Matrix-tree theorem:

awW)® =T] (Z 5jk¢fk>

tj \ k

— computable in O(np?)
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Spread of an epidemics

In practice

Edge probabilities:

At a given time t: Pr{(j,k)e T"| Y}
At least in one time: Pr3t: (j,k)e T'| Y}
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Spread of an epidemics

In practice

Edge probabilities:

At a given time t: Pr{(j,k)e T"| Y}
At least in one time: Pr3t: (j,k)e T'| Y}

Alternatives.

> Bayesian inference can be carried out for e an ¢
> lterating the EM steps does not improve the performances very much

> Observing multiple waves of the epidemics (even over a shortest time-range) improves the
accuracy (see next)
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Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the 'epidemics’ along its edges.

Method: Predict if (j, k) € G based on edge probability Pr{3t: (j,k) e Tt | Y}.
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Method: Predict if (j, k) € G based on edge probability Pr{3t: (j,k) e Tt | Y}.

Parameters: p = 20 nodes

G = ER: Erdds,
G = PA: preferential attachment

d = network density
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Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the 'epidemics’ along its edges.
Method: Predict if (j, k) € G based on edge probability Pr{3t: (j,k) e Tt | Y}.
Parameters: p = 20 nodes

G = ER: Erdds,
G = PA: preferential attachment

d = network density
e=.05

uW: one wave (n = 200)
mW: 10 waves (n = 20)

s: forcing edge probabilities to be symmetric
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Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the 'epidemics’ along its edges.

Method: Predict if (j, k) € G based on edge probability Pr{3t: (j,k) e Tt | Y}.

Parameters: p = 20 nodes AUC:
c=04 d=0.1
G = ER: Erdos, 1.0 -
G = PA: preferential attachment 0.9 - . é - )
- ! "o E
- < l T
d = network density 08 ' E : T EE .
e=.05 0.7 = E i E oL
[ : <L o
06+ + v . 80
uW: one wave (n = 200) Ll 9
mW: 10 waves (n = 20) 05 - T T T T T T
” ® 0 @
o . $2323£%¢
s: forcing edge probabilities to be symmetric I3 5 E 13 DI €
% x x ﬂf] & < & <|
w w o o oy
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Spread of an epidemics

[llustration: Seed exchange network

Question: decipher the social structure underlying
seed exchanges between farmers

Telangana region (India) data:
> p = 127 farmers
> n = 3 years

> 14 seed varieties (waves)

Yt’i’ = 1 if farmer i holds variety h at time t.
No symmetry assumption.

More exchanges
> within the same caste
> within the same village

Most probable donor for each farmer
> from younger to older
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Concluding remarks
Conclusion
Tree shaped mixtures
> Flexible model for multivariate distributions

> Base on a mixture with exponentially many components (pP~?)

> But giving access to edge probabilities at a low computational cost
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Tree shaped mixtures
> Flexible model for multivariate distributions
> Base on a mixture with exponentially many components (pP~?)

> But giving access to edge probabilities at a low computational cost

Extensions
> 'Network’ inference (= structure inference) [SRS19]
> Network comparison or network changes along time [SR17]
> Accounting for missing nodes ('actors’) [RAR19,MRA20,MRA21]
> S-I-S model can be extended to more that two states (e.g. S-I-R models)
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Concluding remarks

Conclusion

Tree shaped mixtures
> Flexible model for multivariate distributions
> Base on a mixture with exponentially many components (pP~?)

> But giving access to edge probabilities at a low computational cost

Extensions
> 'Network’ inference (= structure inference) [SRS19]
> Network comparison or network changes along time [SR17]
> Accounting for missing nodes ('actors’) [RAR19,MRA20,MRA21]

> S-I-S model can be extended to more that two states (e.g. S-I-R models)

Some questions
> Theoretical guaranties (e.g.: consistency of the estimated graph)?

> Numerical issues arising for large p or n (use tempering?)
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Concluding remarks

"Tree-averaging' principle

Tree conditional distribution. p(T|Y)

2.1% 3.5%

34.1

PN

15.6%

A
—
X
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Concluding remarks
"Tree-averaging' principle

Tree conditional distribution. p(T|Y) )
Edge probabilities. Pr{(j, k) e T | Y}

2.1% 3.5%

34.1

PN

15.6%

Most probable edges.

2)
G"G

(not a tree) [SRS19]

A
—
X

o)
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