Tree-based mixtures: Application in epidemiology

Stéphane Robin
joint work with P. Barbillon, L. Schwaller

Sorbonne Université / LPSM

Bayesian Methods for the Social Sciences, IHP, Oct. 2022

Spred of an 'epidemics' [BSR $\left.{ }^{+} 19\right]$

Data: n times, p individuals,

$$
Y_{t j}=\text { status ('sick' / 'healthy') of individual } j \text { at time } t
$$

Spred of an 'epidemics' [BSR $\left.{ }^{+} 19\right]$

Data: n times, p individuals,

$$
Y_{t j}=\text { status ('sick' / 'healthy') of individual } j \text { at time } t
$$

Assumption: 'Contamination' spreads according to some 'social' network (not anybody can be 'contaminated' by anybody)

Spred of an 'epidemics' [BSR ${ }^{+}$19]

Data: n times, p individuals,

$$
Y_{t j}=\text { status ('sick' / 'healthy') of individual } j \text { at time } t
$$

Assumption: 'Contamination' spreads according to some 'social' network (not anybody can be 'contaminated' by anybody)

Final aim: Learn something about this network.
For now: Observe that the path of the 'epidemics' is a tree.

Outline

Reminder on graphical models and trees

Tree shaped distributions and mixtures

Spread of an epidemics

Graphical models

Undirected graphical model [Lau96]: the multivariate distribution p is faithful to the graph G iff

$$
p(Y) \propto \prod_{C \in \mathcal{C}(G)} \psi_{C}\left(Y^{C}\right)
$$

(i.e., iff p can be factorized according to the set $\mathcal{C}(G)$ of maximal cliques of G)

Graphical models

Undirected graphical model [Lau96]: the multivariate distribution p is faithful to the graph G iff

$$
p(Y) \propto \prod_{C \in \mathcal{C}(G)} \psi_{C}\left(Y^{C}\right)
$$

(i.e., iff p can be factorized according to the set $\mathcal{C}(G)$ of maximal cliques of G)

Example:

$$
p(Y) \propto \psi_{1}\left(Y_{1}, Y_{2}, Y_{3}\right) \psi_{2}\left(Y_{3}, Y_{4}\right)
$$

- Connected graph: all variables are dependent
- $Y_{3}=$ separator: $\left(Y_{4} \perp\left(Y_{1}, Y_{2}\right)\right) \mid Y_{3}$

Tree-shaped graphical model

Spanning tree $=$ acyclic graph connecting all the nodes

Tree-shaped graphical model

Spanning tree $=$ acyclic graph connecting all the nodes

Tree-shaped graphical model: p faithful to the spanning tree T

$$
\Leftrightarrow \quad p(Y) \propto \prod_{(j, k) \in T} \psi_{j k}\left(Y_{j}, Y_{k}\right)
$$

(cliques are only edges)
\rightarrow All variables are dependent (spanning) but few are conditionnaly dependent (tree)

Maximum likelihood inference

Consider $Y \sim p$, faithful to T :

$$
\log p_{T}(Y)=\sum_{(j, k) \in T} \log \psi_{j k}\left(Y_{j}, Y_{k}\right)+\mathrm{cst}
$$

[^0]
Maximum likelihood inference

Consider $Y \sim p$, faithful to T :

$$
\log p_{T}(Y)=\sum_{(j, k) \in T} \log \psi_{j k}\left(Y_{j}, Y_{k}\right)+\mathrm{cst}
$$

Suppose each $\psi_{j k}$ has a parametric form and that MLEs $\hat{\psi}_{j k}$ is available.

[^1]
Maximum likelihood inference

Consider $Y \sim p$, faithful to T :

$$
\log p_{T}(Y)=\sum_{(j, k) \in T} \log \psi_{j k}\left(Y_{j}, Y_{k}\right)+\mathrm{cst}
$$

Suppose each $\psi_{j k}$ has a parametric form and that MLEs $\hat{\psi}_{j k}$ is available.

Tree MLE. Finding

$$
\hat{T}=\underset{T \in \mathcal{T}}{\arg \max } \log p_{T}(Y)
$$

amounts to solve a maximum spanning tree problem, where edge (j, k) has weight

$$
\log \hat{\psi}_{j k}\left(Y_{j}, Y_{k}\right)
$$

(Chow \& Liu algorithm ${ }^{1}$: [CL68])

[^2]
Outline

Reminder on graphical models and trees

Tree shaped distributions and mixtures

Spread of an epidemics

Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

- Tree marginal distribution: product form

$$
p(T)=B^{-1} \prod_{(j, k) \in T} \beta_{j k}, \quad B=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \beta_{j k} .
$$

Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

- Tree marginal distribution: product form

$$
p(T)=B^{-1} \prod_{(j, k) \in T} \beta_{j k}, \quad B=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \beta_{j k} .
$$

- Data conditional distribution (likelihood):

$$
p(Y \mid T) \propto \prod_{(j, k) \in T} \psi_{j k}\left(Y_{j}, Y_{k}\right)
$$

Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

- Tree marginal distribution: product form

$$
p(T)=B^{-1} \prod_{(j, k) \in T} \beta_{j k}, \quad B=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \beta_{j k} .
$$

- Data conditional distribution (likelihood):

$$
p(Y \mid T) \propto \prod_{(j, k) \in T} \psi_{j k}\left(Y_{j}, Y_{k}\right)
$$

- Data marginal distribution:

$$
p(Y)=\sum_{T \in \mathcal{T}} p(T) p(Y \mid T) \propto \sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \underbrace{\beta_{j k} \psi_{j k}\left(Y_{j}, Y_{k}\right)}_{w_{j k}(Y)} .
$$

Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

- Tree marginal distribution: product form

$$
p(T)=B^{-1} \prod_{(j, k) \in T} \beta_{j k}, \quad B=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \beta_{j k} .
$$

- Data conditional distribution (likelihood):

$$
p(Y \mid T) \propto \prod_{(j, k) \in T} \psi_{j k}\left(Y_{j}, Y_{k}\right)
$$

- Data marginal distribution:

$$
p(Y)=\sum_{T \in \mathcal{T}} p(T) p(Y \mid T) \propto \sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} \underbrace{\beta_{j k} \psi_{j k}\left(Y_{j}, Y_{k}\right)}_{w_{j k}(Y)} .
$$

- Tree conditional distribution: product form

$$
p(T \mid Y)=C^{-1} \prod_{(j, k) \in T} w_{j k}(Y), \quad C=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} w_{j k}(Y)
$$

Summing over trees

We need to sum over the set \mathcal{T} of spanning trees, but

$$
\operatorname{card}(\mathcal{T})=p^{p-2}
$$

Summing over trees

We need to sum over the set \mathcal{T} of spanning trees, but

$$
\operatorname{card}(\mathcal{T})=p^{p-2}
$$

Matrix-Tree Theorem (Kirchhoff) [Cha82]. Let $W=\left[w_{j k}\right]$ be a symmetric matrix with null diagonal and $\Delta(W)$, its Laplacian:

$$
\Delta(W)_{j k}=\left\{\begin{array}{cl}
\sum_{k} w_{j k} & \text { if } j=k \\
-w_{j k} & \text { otherwise }
\end{array}\right.
$$

then

Summing over trees

We need to sum over the set \mathcal{T} of spanning trees, but

$$
\operatorname{card}(\mathcal{T})=p^{p-2}
$$

Matrix-Tree Theorem (Kirchhoff) [Cha82]. Let $W=\left[w_{j k}\right]$ be a symmetric matrix with null diagonal and $\Delta(W)$, its Laplacian:

$$
\Delta(W)_{j k}=\left\{\begin{array}{cl}
\sum_{k} w_{j k} & \text { if } j=k \\
-w_{j k} & \text { otherwise }
\end{array}\right.
$$

then

1. all the cofactors $[\Delta(W)]^{\mu v}$ of $\Delta(W)$ are equal

Summing over trees

We need to sum over the set \mathcal{T} of spanning trees, but

$$
\operatorname{card}(\mathcal{T})=p^{p-2}
$$

Matrix-Tree Theorem (Kirchhoff) [Cha82]. Let $W=\left[w_{j k}\right]$ be a symmetric matrix with null diagonal and $\Delta(W)$, its Laplacian:

$$
\Delta(W)_{j k}=\left\{\begin{array}{cl}
\sum_{k} w_{j k} & \text { if } j=k \\
-w_{j k} & \text { otherwise }
\end{array}\right.
$$

then

1. all the cofactors $[\Delta(W)]^{\mu v}$ of $\Delta(W)$ are equal
2. and

$$
[\Delta(W)]^{u v}=\sum_{T \in \mathcal{T}} \prod_{(j, k) \in T} w_{j k}
$$

(i.e.: $\sum_{T \in \mathcal{T}}$ can be computed at the price of a determinant: $O\left(p^{3}\right)$)

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge probabilities:

$$
\operatorname{Pr}\{(j, k) \in T\} \quad \text { or } \quad \operatorname{Pr}\{(j, k) \in T \mid Y\} .
$$

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge probabilities:

$$
\operatorname{Pr}\{(j, k) \in T\} \quad \text { or } \quad \operatorname{Pr}\{(j, k) \in T \mid Y\} .
$$

Theorem [Kir07]. Denote $W^{a b}$ the same matrix as W but setting $w_{a b}=w_{b a}=0$, then

$$
\left[\Delta\left(W^{a b}\right)\right]^{a b}=\sum_{T \in \mathcal{T}:(a, b) \notin T} \prod_{(j, k) \in T} w_{j k}
$$

Edge probability

We may not be interested in the whole (conditional) distribution of T, but rather on edge probabilities:

$$
\operatorname{Pr}\{(j, k) \in T\} \quad \text { or } \quad \operatorname{Pr}\{(j, k) \in T \mid Y\} .
$$

Theorem [Kir07]. Denote $W^{a b}$ the same matrix as W but setting $w_{a b}=w_{b a}=0$, then

$$
\left[\Delta\left(W^{a b}\right)\right]^{a b}=\sum_{T \in \mathcal{T}:(a, b) \notin T} \prod_{(j, k) \in T} w_{j k}
$$

- Gives access to $\operatorname{Pr}\{(j, k) \notin T\}$ or $\operatorname{Pr}\{(j, k) \notin T\}$
- All $\left[\Delta\left(W^{a b}\right)\right]^{a b}$ can be computed at the price of one matrix inversion: $O\left(p^{3}\right)$

Outline

Reminder on graphical models and trees

Tree shaped distributions and mixtures

Spread of an epidemics

Susceptible-Infected-Susceptible (SIS) model

Data. n times, p individuals

$$
Y_{t j}= \begin{cases}1 & \text { if individual } j \text { is infected at time } t \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Complete observations

Susceptible-Infected-Susceptible (SIS) model

Data. n times, p individuals

$$
Y_{t j}= \begin{cases}1 & \text { if individual } j \text { is infected at time } t \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Complete observations

Model. At each time t, each node k

- picks up a parent j at time $t-1$ with probability $\propto \beta_{j k}$ and,
- denoting $\psi_{j k}^{t}=\operatorname{Pr}\left\{Y_{t+1, k} \mid Y_{t, k}, Y_{t, j}\right\}$, it evolves according to

$\psi_{j k}^{t}$		$Y_{t+1, k}=0$	$Y_{t+1, k}=1$
$Y_{t, k}=1$	$Y_{t, j}=1$	e	$1-e$
$Y_{t, k}=1$	$Y_{t, j}=0$	e	$1-e$
$Y_{t, k}=0$	$Y_{t, j}=1$	$1-c$	c
$Y_{t, k}=0$	$Y_{t, j}=0$	1	0

- $c=$ contamination rate
- $e=$ extinction rate (become susceptible again)

A tree-shaped path

Adding a fictitious root Δ (at time 0), a path is a tree $T=\left(T^{1}, \ldots, T^{n-1}\right)$:

A tree-shaped path

Adding a fictitious root Δ (at time 0), a path is a tree $T=\left(T^{1}, \ldots, T^{n-1}\right)$:

Define \mathcal{T}_{Δ} the set of oriented spanning tree

- over the nodes $\Delta \cup\{(t, k): 1 \leqslant t \leqslant n, 1 \leqslant k \leqslant p\}$,
- rooted in Δ,
- with edges connecting only time-adjacent nodes $(j \neq k)$
$\rightarrow \mathcal{T}_{\Delta}=$ set of spanning trees going 'forward' in time $\left(\left|\mathcal{T}_{\Delta}\right|=(p-1)^{p(n-1)}\right)$

Inference

EM algorithm. Denote

$$
\theta=\left(\beta=\left[\beta_{j k}\right], e, c\right)
$$

Inference

EM algorithm. Denote

$$
\theta=\left(\beta=\left[\beta_{j k}\right], e, c\right)
$$

E Step: Compute the conditional distribution

$$
p\left(T_{\Delta}=\left(T^{1}, \ldots T^{n-1}\right) \mid Y\right)=\frac{\prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}{\sum_{T \in \mathcal{T}_{\Delta}} \prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}, \quad w_{j k}^{t}=\beta_{j k} \psi_{j k}^{t}
$$

Inference

EM algorithm. Denote

$$
\theta=\left(\beta=\left[\beta_{j k}\right], e, c\right)
$$

E Step: Compute the conditional distribution

$$
p\left(T_{\Delta}=\left(T^{1}, \ldots T^{n-1}\right) \mid Y\right)=\frac{\prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}{\sum_{T \in \mathcal{T}_{\Delta}} \prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}, \quad w_{j k}^{t}=\beta_{j k} \psi_{j k}^{t}
$$

M Step: Update the parameters as

$$
\widehat{\theta}=\arg \max \mathbb{E}\left[\log p_{\theta}(Y, T) \mid Y\right]
$$

Inference

EM algorithm. Denote

$$
\theta=\left(\beta=\left[\beta_{j k}\right], e, c\right)
$$

E Step: Compute the conditional distribution

$$
p\left(T_{\Delta}=\left(T^{1}, \ldots T^{n-1}\right) \mid Y\right)=\frac{\prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}{\sum_{T \in \mathcal{T}_{\Delta}} \prod_{t=1}^{n-1} \prod_{(j, k) \in T^{t}} w_{j k}^{t}}, \quad w_{j k}^{t}=\beta_{j k} \psi_{j k}^{t}
$$

M Step: Update the parameters as

$$
\widehat{\theta}=\arg \max \mathbb{E}\left[\log p_{\theta}(Y, T) \mid Y\right]
$$

Critical step $=E$ step.

- We now need to sum over the (huge) set of rooted oriented trees \mathcal{T}_{Δ}.
- Hopefully, a alternative version of the matrix-tree theorem enables to sum over all directed trees (W asymmetric) with given root [Cha82].

An easy situation

$W=\left[w_{j k}^{t}\right]$ where $w_{j k}^{t}=\beta_{j k} \psi_{j k}^{t}$:
Edges connect only time-adjacent nodes

An easy situation

$W=\left[w_{j k}^{t}\right]$ where $w_{j k}^{t}=\beta_{j k} \psi_{j k}^{t}$:
Edges connect only time-adjacent nodes
\rightarrow Laplacian $\Delta(W)$ is upper triangular
\rightarrow Matrix-tree theorem:

$$
\Delta(W)^{00}=\prod_{t, j}\left(\sum_{k} \beta_{j k} \psi_{j k}^{t}\right)
$$

\rightarrow computable in $O\left(n p^{2}\right)$

In practice

Edge probabilities:

$$
\begin{aligned}
\text { At a given time } t: & \operatorname{Pr}\left\{(j, k) \in T^{t} \mid Y\right\} \\
\text { At least in one time: } & \operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}
\end{aligned}
$$

In practice

Edge probabilities:

$$
\begin{aligned}
\text { At a given time } t: & \operatorname{Pr}\left\{(j, k) \in T^{t} \mid Y\right\} \\
\text { At least in one time: } & \operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}
\end{aligned}
$$

Alternatives.

- Bayesian inference can be carried out for e an c
- Iterating the EM steps does not improve the performances very much
- Observing multiple waves of the epidemics (even over a shortest time-range) improves the accuracy (see next)

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.

Parameters: $p=20$ nodes

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.
Parameters: $p=20$ nodes
$G=E R:$ Erdös,
$G=\mathrm{PA}:$ preferential attachment

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.
Parameters: $p=20$ nodes
$G=E R:$ Erdös,
$G=\mathrm{PA}$: preferential attachment
$d=$ network density
$e=.05$

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.
Parameters: $p=20$ nodes
$G=E R:$ Erdös,
$G=\mathrm{PA}:$ preferential attachment
$d=$ network density $e=.05$
uW : one wave $(n=200)$
mW : 10 waves $(n=20)$

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.
Parameters: $p=20$ nodes
$G=E R:$ Erdös,
$G=\mathrm{PA}:$ preferential attachment
$d=$ network density
$e=.05$
uW : one wave $(n=200)$
mW : 10 waves $(n=20)$
s : forcing edge probabilities to be symmetric

Simulation study

Design: Consider a graph G and launch the 'epidemics' along its edges.
Method: Predict if $(j, k) \in G$ based on edge probability $\operatorname{Pr}\left\{\exists t:(j, k) \in T^{t} \mid Y\right\}$.

Parameters: $p=20$ nodes
$G=E R:$ Erdös,
$G=$ PA: preferential attachment
d = network density
$e=.05$
uW : one wave $(n=200)$
mW : 10 waves $(n=20)$
s : forcing edge probabilities to be symmetric

AUC:
$\mathrm{c}=0.4 \mathrm{~d}=0.1$

Illustration: Seed exchange network

Question: decipher the social structure underlying seed exchanges between farmers

Telangana region (India) data:

- $p=127$ farmers
- $n=3$ years
- 14 seed varieties (waves)
$Y_{t i}^{h}=1$ if farmer i holds variety h at time t.
No symmetry assumption.

More exchanges

- within the same caste
- within the same village
- from younger to older

Most probable donor for each farmer

Conclusion

Tree shaped mixtures

- Flexible model for multivariate distributions
- Base on a mixture with exponentially many components (p^{p-2})
- But giving access to edge probabilities at a low computational cost

Conclusion

Tree shaped mixtures

- Flexible model for multivariate distributions
- Base on a mixture with exponentially many components (p^{p-2})
- But giving access to edge probabilities at a low computational cost

Extensions

- 'Network' inference (= structure inference) [SRS19]
- Network comparison or network changes along time [SR17]
- Accounting for missing nodes ('actors') [RAR19,MRA20,MRA21]
- S-I-S model can be extended to more that two states (e.g. S-I-R models)

Conclusion

Tree shaped mixtures

- Flexible model for multivariate distributions
- Base on a mixture with exponentially many components (p^{p-2})
- But giving access to edge probabilities at a low computational cost

Extensions

- 'Network' inference (= structure inference) [SRS19]
- Network comparison or network changes along time [SR17]
- Accounting for missing nodes ('actors') [RAR19,MRA20,MRA21]
- S-I-S model can be extended to more that two states (e.g. S-I-R models)

Some questions

- Theoretical guaranties (e.g.: consistency of the estimated graph)?
- Numerical issues arising for large p or n (use tempering?)

References I

P Barbillon, L. Schwaller, S. Robin, A. Flachs, and G.D. Stone. Epidemiologic network inference. Statistics and Computing, pages 1-15, 2019.
S Chaiken. A combinatorial proof of the all minors matrix tree theorem. SIAM Journal on Algebraic Discrete Methods, 3(3):319-329, 1982.

Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14(3):462-467, 1968.

Lauritzen. Graphical Models. Oxford Statistical Science Series. Clarendon Press, 1996. 11(5):621-632, 2020.
omal, S. Robin, and C. Ambroise. Accounting for missing actors in interaction network inference from abundance data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2021.
C. Ambroise, and S. Robin. Incomplete graphical model inference via latent tree aggregation. Statistical Modelling, 19(5):545-568, 2019.
hwaller and S. Robin. Exact Bayesian inference for off-line change-point detection in tree-structured graphical models. Statistics and Computing, 27(5):1331-1345, 2017.

Shwaller, S. Robin, and M. Stumpf. Bayesian inference of graphical model structures using trees. J. Soc. Franc. Stat., 160(2):1-23, 2019.
'Tree-averaging' principle

Tree conditional distribution. $p(T \mid Y)$

'Tree-averaging' principle

Tree conditional distribution. $p(T \mid Y)$

Edge probabilities. $\operatorname{Pr}\{(j, k) \in T \mid Y\}$

'Tree-averaging' principle

Tree conditional distribution. $p(T \mid Y)$
Edge probabilities. $\operatorname{Pr}\{(j, k) \in T \mid Y\}$

Most probable edges.

(not a tree) [SRS19]

[^0]: ${ }^{1}$ Actually $\psi_{j k}\left(Y_{j}, Y_{k}\right)=p\left(Y_{j}, Y_{k}\right) /\left(p\left(Y_{j}\right) p\left(Y_{k}\right)\right)$, so edge weight $=$ mutual information

[^1]: ${ }^{1}$ Actually $\psi_{j k}\left(Y_{j}, Y_{k}\right)=p\left(Y_{j}, Y_{k}\right) /\left(p\left(Y_{j}\right) p\left(Y_{k}\right)\right)$, so edge weight $=$ mutual information

[^2]: ${ }^{1}$ Actually $\psi_{j k}\left(Y_{j}, Y_{k}\right)=p\left(Y_{j}, Y_{k}\right) /\left(p\left(Y_{j}\right) p\left(Y_{k}\right)\right)$, so edge weight $=$ mutual information

