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Introduction

Spred of an ’epidemics’ [BSR`19]

Data: n times, p individuals,

Ytj “ status (’sick’ / ’healthy’) of individual j at time t

Assumption: ’Contamination’ spreads according to some ’social’ network (not anybody can be
’contaminated’ by anybody)

Final aim: Learn something about this network.

For now: Observe that the path of the ’epidemics’ is a tree.
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Reminder on graphical models and trees

Graphical models

Undirected graphical model [Lau96]: the multivariate distribution p is faithful to the graph G iff

ppY q 9
ź

CPCpGq
ψC pY

C q

(i.e., iff p can be factorized according to the set CpGq of maximal cliques of G)

Example:

Y3

Y1 Y2

Y4

ppY q 9 ψ1pY1,Y2,Y3q ψ2pY3,Y4q

§ Connected graph: all variables are dependent

§ Y3 “ separator: pY4 K pY1,Y2qq | Y3
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Reminder on graphical models and trees

Tree-shaped graphical model

Spanning tree = acyclic graph connecting all the nodes

spanning trees not spanning not a tree

Tree-shaped graphical model: p faithful to the spanning tree T

ô ppY q 9
ź

pj,kqPT

ψjk pYj ,Yk q

(cliques are only edges)

Ñ All variables are dependent (spanning) but few are conditionnaly dependent (tree)
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Reminder on graphical models and trees

Maximum likelihood inference

Consider Y „ p, faithful to T :

log pT pY q “
ÿ

pj,kqPT

logψjk pYj ,Yk q ` cst

Suppose each ψjk has a parametric form and that MLEs pψjk is available.

Tree MLE. Finding
pT “ arg max

TPT
log pT pY q

amounts to solve a maximum spanning tree problem, where edge pj , kq has weight

log pψjk pYj ,Yk q

(Chow & Liu algorithm1: [CL68])

1Actually ψjk pYj , Yk q “ ppYj , Yk q{
`

ppYj qppYk q
˘

, so edge weight = mutual information
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S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 7 / 20



Tree shaped distributions and mixtures

Tree-based mixture

Mixture of tree-shaped distributions [MJ06,Kir07].

§ Tree marginal distribution: product form

ppT q “ B´1
ź

pj,kqPT

βjk , B “
ÿ

TPT

ź

pj,kqPT

βjk .

§ Data conditional distribution (likelihood):

ppY | T q 9
ź

pj,kqPT

ψjk pYj ,Yk q.

§ Data marginal distribution:

ppY q “
ÿ

TPT
ppT qppY | T q 9

ÿ

TPT

ź

pj,kqPT

βjkψjk pYj ,Yk q
loooooooomoooooooon

wjk pY q

.

§ Tree conditional distribution: product form

ppT | Y q “ C´1
ź

pj,kqPT

wjk pY q, C “
ÿ

TPT

ź

pj,kqPT

wjk pY q.
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Tree shaped distributions and mixtures

Summing over trees

We need to sum over the set T of spanning trees, but

card pT q “ pp´2

Matrix-Tree Theorem (Kirchhoff) [Cha82]. Let W “ rwjk s be a symmetric matrix with null
diagonal and ∆pW q, its Laplacian:

∆pW qjk “

"
ř

k wjk if j “ k
´wjk otherwise

then

1. all the cofactors r∆pW qsuv of ∆pW q are equal

2. and
r∆pW qsuv “

ÿ

TPT

ź

pj,kqPT

wjk

(i.e.:
ř

TPT can be computed at the price of a determinant: Opp3q)
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Tree shaped distributions and mixtures

Edge probability

We may not be interested in the whole (conditional) distribution of T , but rather on edge
probabilities:

Prtpj , kq P Tu or Prtpj , kq P T | Y u.

Theorem [Kir07]. Denote W ab the same matrix as W but setting wab “ wba “ 0, then

r∆pW abqsab “
ÿ

TPT :pa,bqRT

ź

pj,kqPT

wjk

§ Gives access to Prtpj , kq R Tu or Prtpj , kq R Tu

§ All r∆pW abqsab can be computed at the price of one matrix inversion: Opp3q
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Spread of an epidemics

Susceptible-Infected-Susceptible (SIS) model

Data. n times, p individuals

Ytj “

"

1 if individual j is infected at time t
0 otherwise

Ñ Complete observations

Model. At each time t, each node k

§ picks up a parent j at time t ´ 1 with probability 9 βjk and,

§ denoting ψt
jk “ PrtYt`1,k | Yt,k ,Yt,ju, it evolves according to

ψt
jk Yt`1,k “ 0 Yt`1,k “ 1

Yt,k “ 1 Yt,j “ 1 e 1´ e
Yt,k “ 1 Yt,j “ 0 e 1´ e
Yt,k “ 0 Yt,j “ 1 1´ c c
Yt,k “ 0 Yt,j “ 0 1 0

§ c “ contamination rate

§ e “ extinction rate (become susceptible again)
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Spread of an epidemics

A tree-shaped path

Adding a fictitious root ∆ (at time 0), a path is a tree T “ pT 1, . . . ,T n´1q:

Define T∆ the set of oriented spanning tree

§ over the nodes ∆Y tpt, kq : 1 ď t ď n, 1 ď k ď pu,

§ rooted in ∆,

§ with edges connecting only time-adjacent nodes pj ‰ kq

Ñ T∆ “ set of spanning trees going ’forward’ in time (|T∆| “ pp ´ 1qppn´1q)
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Spread of an epidemics

Inference

EM algorithm. Denote
θ “ pβ “ rβjk s, e, cq

E Step: Compute the conditional distribution

ppT∆ “ pT
1, . . .T n´1q | Y q “

śn´1
t“1

ś

pj,kqPT t w t
jk

ř

TPT∆

śn´1
t“1

ś

pj,kqPT t w t
jk

, w t
jk “ βjkψ

t
jk

M Step: Update the parameters as

pθ “ arg maxE rlog pθpY ,T q | Y s

Critical step = E step.

§ We now need to sum over the (huge) set of rooted oriented trees T∆.

§ Hopefully, a alternative version of the matrix-tree theorem enables to sum over all directed
trees (W asymmetric) with given root [Cha82].
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Spread of an epidemics

An easy situation

W “

W “ rw t
jk s where w t

jk “ βjkψ
t
jk :

Edges connect only time-adjacent
nodes

Ñ Laplacian ∆pW q

is upper triangular

Ñ Matrix-tree theorem:

∆pW q00 “
ź

t,j

˜

ÿ

k

βjkψ
t
jk

¸

Ñ computable in Opnp2q
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Spread of an epidemics

In practice

Edge probabilities:

At a given time t: Prtpj , kq P T t | Y u

At least in one time: PrtDt : pj , kq P T t | Y u

Alternatives.

§ Bayesian inference can be carried out for e an c

§ Iterating the EM steps does not improve the performances very much

§ Observing multiple waves of the epidemics (even over a shortest time-range) improves the
accuracy (see next)
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Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the ’epidemics’ along its edges.

Method: Predict if pj , kq P G based on edge probability PrtDt : pj , kq P T t | Y u.

Parameters: p “ 20 nodes

G “ ER: Erdös,
G “ PA: preferential attachment

d “ network density
e “ .05

uW: one wave (n “ 200)
mW: 10 waves (n “ 20)

s: forcing edge probabilities to be symmetric

AUC:

S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 17 / 20



Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the ’epidemics’ along its edges.

Method: Predict if pj , kq P G based on edge probability PrtDt : pj , kq P T t | Y u.

Parameters: p “ 20 nodes

G “ ER: Erdös,
G “ PA: preferential attachment

d “ network density
e “ .05

uW: one wave (n “ 200)
mW: 10 waves (n “ 20)

s: forcing edge probabilities to be symmetric

AUC:

S. Robin (Sorbonne Université / LPSM) Tree-based mixtures IHP, Oct. 2022 17 / 20



Spread of an epidemics

Simulation study

Design: Consider a graph G and launch the ’epidemics’ along its edges.

Method: Predict if pj , kq P G based on edge probability PrtDt : pj , kq P T t | Y u.

Parameters: p “ 20 nodes

G “ ER: Erdös,
G “ PA: preferential attachment

d “ network density
e “ .05

uW: one wave (n “ 200)
mW: 10 waves (n “ 20)

s: forcing edge probabilities to be symmetric

AUC:
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Spread of an epidemics

Illustration: Seed exchange network

Question: decipher the social structure underlying
seed exchanges between farmers

Telangana region (India) data:

§ p “ 127 farmers

§ n “ 3 years

§ 14 seed varieties (waves)

Y h
ti “ 1 if farmer i holds variety h at time t.

No symmetry assumption.

More exchanges

§ within the same caste

§ within the same village

§ from younger to older Most probable donor for each farmer
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Concluding remarks

Conclusion

Tree shaped mixtures

§ Flexible model for multivariate distributions

§ Base on a mixture with exponentially many components (pp´2)

§ But giving access to edge probabilities at a low computational cost

Extensions

§ ’Network’ inference (= structure inference) [SRS19]

§ Network comparison or network changes along time [SR17]

§ Accounting for missing nodes (’actors’) [RAR19,MRA20,MRA21]

§ S-I-S model can be extended to more that two states (e.g. S-I-R models)

Some questions

§ Theoretical guaranties (e.g.: consistency of the estimated graph)?

§ Numerical issues arising for large p or n (use tempering?)
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’Tree-averaging’ principle

Tree conditional distribution. ppT |Y q
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