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1 Introduction

The purpose of statistical modeling is often to retrieve some hidden process that is at work
behind what is observed. The purpose of this lecture is to present a series of statistical models
involving hidden, or latent, variables with application to (molecular) biology. In this field the
hidden process often refers to some unobserved classification, so the hidden process is supposed
to have a discrete state-space. Still, most of the techniques presented hereafter can be generalized
to continuous state-space models.

Such models are part of so-called incomplete data models, the inference of which requires
some specific developments. Most of the techniques that will be presented consists in variations
around the expectation-maximization (EM) algorithm first proposed by Dempster et al. (1977).
In the last decades, this family of algorithms has been re-considered and casted into a larger
framework based on graphical models and variational techniques (see Jaakkola (2001) for an
introduction or Wainwright and Jordan (2008) for a very complete review).

In such algorithms, the critical step is often the determination of the conditional distribution
of the hidden variables given the observed ones, or at least the calculation of some of its moments.
The three parts of these notes refer respectively to the cases where, in a frequentist framework,

Section 2: the calculation of the required conditional moments of the hidden variables is
straightforward,

Section 3: this calculation is not straightforward but still possible,

Section 4: this calculation is not possible and approximations are needed.

The last section generalizes Section 4 to the Bayesian framework.

Section 5: the calculation of the joint conditional distribution of the parameters and the hidden
variables is not possible and variational approximations can be derived.

Acknowledgements. The author is extremely grateful to Pierre Barbillon, Maud Delattre
and Sarah Ouadah for their careful reading, and their helpful comments, remarks and advises.
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Notations. All along these notes, we will use the following notations for the variables:

Y = observed variables;

Z = unobserved (hidden, latent) variables;

θ = parameters;

x = covariates (if needed).

As for the distributions, we will denote

f(·) or p(·) = probability distribution function (pdf);

fθ(·) = f(·; θ) or pθ(·) = p(·; θ) = pdf with parameter θ;

Eθ = expectation under pθ.

The subscript θ may be replaced by the distribution itself (e.g. Ep or Eq) or dropped when not
necessary.

As for classical distributions, we will use the following notations:

U[a,b] = uniform distribution over the interval [a, b];

N (µ, σ2) = Gaussian distribution with mean µ and variance σ2;

M(n, π) = multinomial distribution with n draws and vector of probabilities π = (π1, . . . , πK),
(
∑

k πk = 1);

P(λ) = Poisson distribution with mean λ;

B(α, β) = beta distribution;

D(α) = Dirichlet distribution with parameter α = (α1, . . . , αK);

NB(π, r) = negative binomial distribution with probability π and number of successes r;

Gam(a, b) = gamma distribution with shape parameter a and rate b.

We will also use the abbreviations rv for ’random variable’, iid for ’independent and identi-
cally distributed’ and wrt for ’with respect to’. We will denote Ji, jK = {i, i+ 1, . . . , j − 1, j}.
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2 Independent latent variables: Mixture models

2.1 Examples

In this chapter, we consider one of the most simple latent variable model: the mixture model. In
this model, observations are supposed to be independent, each arising from a given class that is
unobserved. One of the main goal when using mixture models is to retrieve the class from which
each observation arises. Such a problem is often referred to as ’unsupervised classification’ as
we do not dispose of any observation with known label.

We first present a series of biological examples in which a mixture model turns out to be
useful.

2.1.1 Gene expression

Functional analysis of one gene. To better understand the function of a given gene, on
may measure its expression level Yi in a large set of conditions (e.g. different drug treatments,
tissues, patients with different diseases, ...) i ∈ J1, IK. One hope then to be able to define a
typology, that is to construct a classification, of conditions in which the gene under study is,
e.g., highly, weakly or not expressed. Figure 2.1 displays an example of such measurements.
A latent (i.e. unobserved) status Zi is associated with each condition and the following model
is proposed:

(Zi)i iid ∼ M(1;π), Zi ∈ J1,KK,
(Yi)i indep. | (Zi) ∼ F (γZi)

where F (γ) stands for some parametric distribution with parameter γ. Depending on the tech-
nology, one may take F (γk) = N (µk, σ

2
k) for continuous measurements (such as fluorescence

measurements provided by microarrays), F (γk) = P(γk) or F (γk) = NB(µk, φk) for count data
(such as read counts provided by deep sequencing technologies).

Figure 2.1: Histogram of the expression measurements of a specific nematode gene across n =
2670 conditions. From Martin-Magniette (pers. com.).
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Genes involved in a given process. To exhibit which genes are involved in a given process
(e.g. tumor growth or response to a stress), the expression levels of ’all’ genes of the organism
under study can be measured in a series of conditions (possibly with replicates) and a test of
the null hypothesis H0,i = ’gene i is not involved in the process’ is carried out.
For each gene, we get a test statistics Ti and a p-value Yi. A latent status Zi is associated with
each gene and the same model as above can be used, taking e.g. F (γk) = B(αk, βk), as Yi ∈ [0, 1]
(Allison et al. (2002)). Figure 2.2 displays an example of the distribution of such p-values.
Note that, in this case, the distribution for the ’null’ genes (i.e. genes for which H0,i is true)
should be the uniform U[0,1] = B(1, 1). In this case, one of the emission distributions, say F (γ1),
is known.

Figure 2.2: Distribution of the p-values associated with all human genes resulting from an
analysis of variance model. Each p-value is associated to the null hypothesis stating that the
considered gene has the same expression level in normal patients as in acute leukemia patients.
From Hedenfalk et al. (2001).

2.1.2 Genetic structure of a population

Many efforts have been made in the last decade to better understand the genetic structure of
populations. Most of them rely on the genotyping of large sets of individuals sampled in different
places, environments or with different origins. In such experiments the genotype Yit of a series
of individuals i ∈ J1, IK at a series of locus t ∈ J1, T K is measured. One hopes to be able to
distinguish sub-populations.

Model without ’admixture’. In this first simple model, each individual i is supposed to
belong to one population, labeled Zi (see Figure 2.3):

(Zi)i iid ∼ M(1;π),

(Yit)i,t indep. | (Zi) ∼ M(1; γZit),

where π = (π1, . . . πK) is the vector of the population proportions and γkt is the vector of the
allelic frequencies at locus t in population k.
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Note that the writing
(Yit)i,t|Zi ∼M(1; γZit)

is equivalent to
(Yit)i,t|(Zi = k) ∼M(1; γkt),

which makes explicit the fact that, if individual i belongs to population k, its genotype is
generated with the allelic frequencies of its population.

Figure 2.3: Population origine of series of human genomes with varying number of groups K.
Each column corresponds to an individual. Colors represent the probability for the individual
to belong to the color class given its genotype. From Rosenberg et al. (2002).

Model with admixture. In this second model, the genotype of each individual is supposed to
come from a different population at each locus. Still, each individual has some preferential trends
characterized by a latent variable Qi (see Figure 2.4). This hidden variable can be interpreted
as the position of individual i in the simplex of RK , the vertices of which correspond to fictitious
individuals purely issued from each population:

(Qi)i iid ∼ D(1;α),

(Sit)i,t indep. | (Qi) ∼ M(1;Qi),

(Yit)i,t indep. | (Sit) ∼ M(1; γSit),

The hidden variable is hence Z = (Q,S).
The model can be rewritten also after marginalization over Sit:

(Qi)i iid ∼ D(1;α),

(Yit)i,t indep. | (Qi) ∼ M

(
1;
∑
k

Qikγkt

)
.

The latent variable reduces then to Z = (Q).
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Figure 2.4: Population origin of loci for 10 pairs of human chromosomes. The legend is similar
to this of 2.3 except that the probability refers to the loci within the individual rather than to
the whole individual. From Falush et al. (2003).

2.2 Model

The general model-based approach is based on the existence, for each individual i, of an unknown
(or latent) label Zi that can take a finite number of values among J1,KK. The distribution of
the observed variables Yi depends on the value of this latent variable Zi.

2.2.1 Model

The simple mixture model further assumes that the observations are independent with para-
metric distribution.

• The latent (Zi) are iid with P (Zi = k) = πk;

• The observed (Yi) are independent conditionally on the latent (Zi);

• Conditionally on when Zi = k, Yi has a parametric distribution Fk = F (γk) with proba-
bility distribution function (pdf) fk(·) = f(·; γk).

The purpose of the inference of a mixture model is to provide estimates of the parameters:

• πk = proportion of the population k,

• γk = parameters of Fk.

All the parameters to be inferred are gathered into θ:

θ := (π, γ) = ((πk), (γk)).

In practice, mixture models are most often used with a classification purpose so the main aim
is to infer the hidden status of each individual Zi.

Remarks.

1. The elements πk = P (Zi = k) of the distribution π are sometimes called prior probabilities
although this denomination may be misleading in a non-Bayesian context. They are also
often refereed to as the proportions of the mixture.

2. The distribution Fk is called the emission distribution in class k as it describes how observed
data arising from class k are emitted. Respectively, fk is called the emission pdf.

Definition 2.1 An independent mixture model is defined as follows:

(Zi)i iid, Zi ∼ M(1;π),
(Yi)i indep. |(Zi), Yi|(Zi = k) ∼ Fk = F (γk),

(2.1)

where π = (π1, . . . , πK). We further denote fk(·) = f(·; γk) the pdf of distribution F (γk).
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Remark. This model is equivalent to

pθ(Z) =
∏
i

∏
k

(πk)
Zik ,

pθ(Y |Z) =
∏
i

∏
k

f(Yi, γk)
Zik ,

introducing the useful notation
Zik = I{Zi = k}.

Marginal distribution. The marginal distribution of the observation Yi is the mixture dis-
tribution

g(y) =
∑
k

πkf(y; γk).

Figure 2.5: Expression level of a nematode gene across n = 2670 conditions: Gaussian mixture
model with homogeneous variance (left) and heterogeneous variances (right). Same data as in
Fig. 2.1.

Identifiability. Since the (Zi) are not observed, the model is invariant for any permutation
of the labels J1,KK. Therefore, the mixture model with K classes has K! equivalent definitions.

Number of parameters. The number of unknown parameters depends on both the dimension
of the data and the number of groups. Due the constraint

∑
k πk = 1, π involves only K − 1

independent parameters. As for the parameter γ, its dimension is typically proportional to
the number of groups K. In the case where the Fk are univariate Poisson distributions with
respective mean γk, γ has dimension K so the mixture model involves 2K − 1 parameters. If
the Fk are d-variate normal distributions (with respective mean vector µk and variance Σk),
(K − 1) +Kd+Kd(d+ 1)/2 ' Kd2/2 parameters have to be estimated.

2.2.2 Dependency structure

All the dependencies involved in a mixture model can be encoded in the graphical model dis-
played in Figure 2.6. We refer to Appendix A.1 for a reminder on the definition of graphical
models. From this figure we see that
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• The (Zi) are independent;

• the (Yi) are independent conditionally to Z = (Zi);

• the couples {(Yi, Zi)}i are iid.

Z1 Zi Zj Zn

Y1 Yi Yj Yn

Figure 2.6: Graphical representation of a mixture model.

Remarks.

1. Note that the variables (Yi, Yj) are not independent conditionally on the event Zi = Zj .

2. Because the {(Yi, Zi)}i are independent, we have that

pθ(Zi|Y ) = pθ(Zi|Yi)

which means that the information about the classification of individual i is contained in
the observation Yi.

2.3 Inference

A general introduction to finite mixture models and their inference can be found in McLahan
and Peel (2000). Several methods have been proposed for the inference of mixture models, but
the most popular is definitely the maximum likelihood approach. The specificity of mixture
models, shared with all latent variable models, is that the observed data Y = (Yi) can be seen as
incomplete, as the latent variables Z = (Zi) are not observed. Such models are therefore often
refereed to as incomplete data models.

2.3.1 Likelihoods

Definition 2.2 The observed data log-likelihood (also called ’incomplete log-likelihood’) is the
marginal log-likelihood of the observed variables Y :

log pθ(Y ).

The complete data log-likelihood is the joint log-likelihood of the observed Y and latent Z vari-
ables:

log pθ(Y, Z).

Proposition 2.1 For the mixture model (2.1), the incomplete log-likelihood is

log pθ(Y ) =
∑
i

log

[∑
k

πkf(Yi; γk)

]
,

and, denoting Zik = I{Zi = k}, the complete log-likelihood is

log pθ(Y, Z) =
∑
i

∑
k

Zik [log πk + log f(Yi; γk)] .
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Proof: The dependency structure described in Figure 2.6 ensures that

log pθ(Y ) =
∑
i

log pθ(Yi) =
∑
i

log g(Yi)

and log pθ(Y,Z) =
∑
i

log pθ(Yi, Zi) =
∑
i

[log pθ(Zi) + log pθ(Yi|Zi)] .

�

2.3.2 EM Algorithm

The EM algorithm was first proposed by Dempster et al. (1977) for a large class of incomplete
data models, including mixture models. It is based on a decomposition of the incomplete data
likelihood.

Proposition 2.2

log pθ(Y ) = Eθ [log pθ(Y, Z)|Y ]− Eθ [log pθ(Z|Y )|Y ] .

Proof: It suffices to develop

Eθ [log pθ(Z|Y )|Y ] = Eθ [log pθ(Y,Z)− log pθ(Y )|Y ]

reminding that Eθ [log pθ(Y )|Y ] = log pθ(Y ). �

Remarks.

1. The decomposition given in Proposition 2.2 is convenient as it makes a connexion between
the observed likelihood log pθ(Y ), which is often intractable, and the complete likelihood
log pθ(Y, Z), which is generally more manageable.

2. The second term corresponds to the entropy of the latent variables Z given the observed
Y : H[p(Z|Y )] := −E[log p(Z|Y )|Y ].

Proposition 2.2 suggests the following algorithm to get the MLE of θ

θ̂ = arg max
θ

log pθ(Y ).

Algorithm 2.1 Repeat until convergence:

Expectation step: given the current estimate θh of θ, compute pθh(Z|Y ), or at least all the
quantities needed to compute Eθh [log pθ(Y,Z)|Y ];

Maximization step: update the estimate of θ as

θh+1 = arg max
θ

Eθh [log pθ(Y,Z)|Y ].

There is no general guaranty about the convergence of the EM algorithm towards the MLE
θ̂. The main property is that the observed likelihood increases at each iteration step.

Proposition 2.3 (Dempster et al. (1977)) The log-likelihood of the observed data log pθ(Y )
increases at each step:

log pθh+1(Y ) ≥ log pθh(Y ).

12



Proof: Because θh+1 = arg maxθ Eθh [log pθ(Y,Z)|Y ], we have

0 ≤ Eθh [log pθh+1(Y, Z)|Y ]− Eθh [log pθh(Y, Z)|Y ]

= Eθh
[
log

pθh+1(Y, Z)

pθh(Y,Z)
|Y
]
≤ logEθh

[
pθh+1(Y, Z)

pθh(Y,Z)
|Y
]

by Jensen’s inequality. We further develop logEθh [pθh+1(Y,Z) /pθh(Y,Z) |Y ] as

log

∫
pθh+1(Y, Z)

pθh(Y,Z)
pθh(Z|Y ) dZ = log

∫
pθh+1(Y,Z)

pθh(Y, Z)

pθh(Y, Z)

pθh(Y )
dZ

= log

[
1

pθh(Y )

∫
pθh+1(Y,Z) dZ

]
= log

[
pθh+1(Y )

pθh(Y )

]
and the proof is completed. �

E step. As mentioned in the introduction, the E step is straightforward for independent
mixture models.

Proposition 2.4 In a mixture model (2.1), the hidden states Zi are independent conditional
on the observations:

pθ(Z|Y ) =
∏
i

pθ(Zi|Yi)

and, denoting Zik = I{Zi = k}, the conditional distribution of each Zi is given by

τik := Pθ(Zi = k|Yi) = Eθ(Zik|Yi) =
πkfk(Yi)∑
` π`f`(Yi)

.

Proof: The first result is a direct consequence of the second remark p.11. The second results
follows the Bayes formula:

τik = Pθ(Zi = k|Yi) =
Pθ(Zi = k)pθ(Yi|Zi = k)

pθ(Yi)
=

Pθ(Zi = k)pθ(Yi|Zi = k)∑
` Pθ(Zi = `)pθ(Yi|Zi = `)

.

Pθ(Zi = k|Yi) = Eθ(Zik|Yi) holds because Zik is binary. �

The update formula’s of the τik at the (h+ 1)-th E step is then

τh+1
ik =

πhkf(Yi; γ
h
k )∑

` π
h
` f(Yi; γh` )

where θh stands for the current estimate of θ resulting from the h-th M step.

Remark. The conditional probability τik is sometimes referred to as the posterior probability
for observation i to belong to class k (as opposed to the prior probability πk). Again this phrase
is misleading in a non-Bayesian context and ’conditional probability’ should be preferred.
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M step. The actual estimation of the parameter θ is achieved at the M step. As indicated
in Algo. 2.1, this step consists in the maximization of the the conditional expectation of the
complete likelihood that appears in the decomposition of Proposition 2.2. We use Proposition 2.1
to get an explicit formula for this quantity

Eθ[log pθ(Y, Z)|Y ] = Eθ

[∑
i

∑
k

Zik[log πk + log f(Yk; γk)]|Y

]
=

∑
i

∑
k

Eθ(Zik|Yi)[log πk + log f(Yk; γk)]

=
∑
i

∑
k

τik[log πk + log f(Yk; γk)].

This quantity has to be maximized with respect to θ = (π, γ), the τik being fixed. The solution
of this optimization problem has no general form as it strongly depends on the model at hand,
especially on the complexity of the emission distributions. However, some general formula can
be derived in the case of the exponential family, as we will see in Section 2.3.4. As for the
proportions, one straightforwardly get πhk = n−1

∑
i τ

h
ik.

Entropy. The entropy term that appears in Proposition 2.2 and in the second remark p.12
can be calculated using the conditional independence of the Zi given the data Y :

H[pθ(Z|Y )] =
∑
i

H[pθ(Zi|Yi)]

= −
∑
i

Eθ[logP (Zi = k|Yi)|Yi] (2.2)

= −
∑
i

∑
k

τik log τik.

2.3.3 Variational interpretation

A more general view on the EM algorithm and its extensions is given by the following property.
We first recall the definition of the Kullback-Leibler divergence between distribution q and p:

KL[q(Z)||p(Z)] = Eq{log [q(Z)/p(Z)]}

and recall that it is always positive1 and is null iff q = p.
The following proposition gives a lower bound of the log-likelihood.

Proposition 2.5 For any distribution q for Z, we have

log p(Y ) ≥ Eq[log p(Y,Z)] +H[q(Z)].

Proof: We write that

log p(Y ) ≥ log p(Y )−KL[q(Z)||p(Z|Y )]

= log p(Y )− Eq[log q(Z)− log p(Y, Z) + log p(Y )]

= log p(Y )− Eq[log q(Z)] + Eq[log p(Y,Z)]− log p(Y )

as Eq[log p(Y )] = log p(Y ) since q is a distribution for Z and the result follows. �

1as Eq log(q/p) = −Eq log(p/q) ≤ − logEq(p/q) = − log
∫
p = − log(1) = 0
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Remark. The decomposition given by Proposition 2.2 is similar to the lower bound of Propo-
sition 2.5 with an equality when taking q(Z) = p(Z|Y ). Furthermore, the E step of the EM
algorithm can be viewed as the solution of the variational problem:

q∗(Z) = arg min
q
KL[q(Z)||p(Z|Y )],

which, in absence of restriction for q is q∗(Z) = p(Z|Y ). From this point of view, the EM
algorithm alternates the minimization of KL[q(Z)||p(Z|Y )] wrt q (E step) and the maximization
of the lower bound Eq[log pθ(Y, Z)] +H[q(Z)] wrt θ (M step).

2.3.4 Case of the exponential family

Definition 2.3 The distribution p belongs to exponential family with canonical parameter θ if

pθ(y) = exp[θᵀt(y)− a(y)− b(θ)]

where t(y) is the vector of the sufficient statistics.

We recall two general properties that show connections between maximum likelihood esti-
mates and moment estimates for this class of distribution. The proofs of both are given in
Appendix A.2.

Proposition 2.6 b′(θ) = Eθ[t(Y )].

Proposition 2.7 For an iid sample (Y1, . . . Yn), the MLE θ̂ of θ satisfies

b′(θ̂) = n−1
∑
i

t(Yi) =: t(Y ).

This shows that the MLE θ̂ is also the moment estimate of θ based on the mean of the sufficient
statistics.

Proposition 2.8 If all emission distributions fk belong to the exponential family with respective
sufficient statistics tk and normalizing functions ak and bk, the maximization in the M step
results in the weighted moment estimates based on the expectation of the sufficient statistics, i.e.
γh+1
k satisfies:

Eγh+1
k

[tk(U)] = T h+1
k /Nh+1

k

where U ∼ f(·, γh+1
k ), τh+1

ik = Eθh+1(Zik|Yi), Nh+1
k =

∑
i τ

h+1
ik and T h+1

k =
∑

i τ
h+1
ik tk(Yi).

Proof: The complete-likelihood is

log p(Y,Z) =
∑
i

∑
k

Zik[log πk + log fk(Yi)] =
∑
i

∑
k

Zik[log πk + γᵀk tk(Yi)− ak(Yi)− bk(γk)]

so its conditional expectation is

E[log p(Y,Z)|Y ] = E

[∑
i

∑
k

Zik [log πk − bk(γk)] |Y

]
+ E

[∑
i

∑
k

Zik
[
γᵀk tk(Yi)− ak(Yi)

]
|Y

]
=

∑
k

Nk[log πk − bk(γk)] +
∑
k

γᵀkTk −
∑
i

τikak(Yi).

The derivative with respect to γk is null iff b′k(γk) = Tk/Nk and the result follows from the
general properties of the exponential family given in Propositions 2.6 and 2.7. �

Note that T h+1
k /Nh+1

k is an empirical weighted moment of the Yi so the estimate of γk
resulting from Proposition 2.7 is a moment-type estimate. Also note that, depending on the
form of Eγk [tk(U)] as a function of γk, this estimate can have a close form or not. The popular
cases listed below are cases where Eγk [tk(U)] has a simple form.
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Some popular models. As a consequence of this, we derive the estimates for a series of
models:

• Multinomial mixture: Fk =M(1; γk), denoting Yia = I{Yi = a}:

γ̂ka = N−1
k

∑
i

τikYia.

• Gaussian mixture: Fk = N (µk, σ
2
k):

µ̂k = N−1
k

∑
i

τikYi, σ̂2
k = N−1

k

∑
i

τik(Yi − µ̂k)2.

• Poisson mixture: Fk = P(γk):

γ̂k = N−1
k

∑
i

τikYi.

2.3.5 Asymptotic variance and Fisher information

We remind that the asymptotic variance of the maximum likelihood estimate

θ̂ = (π̂, γ̂)

is provided by the Fisher information matrix I by

V∞(θ̂) = I−1
θ

where

Sθ(Y ) = ∂θ log pθ(Y ) and Iθ = E[Sθ(Y )Sθ(Y )ᵀ] = −E
[
∂2
θ2 log pθ(Y )

]
.

Louis (1982) provides a convenient way to compute the Hessian matrix

S′θ(Y ) = ∂2
θ2 log pθ(Y ),

which only uses by-products of the EM algorithm.

Proposition 2.9 (Louis (1982))

S′θ(Y ) = E[S′θ(Y,Z)|Y ] + E [Sθ(Y,Z)Sθ(Y, Z)ᵀ|Y ]− E[Sθ(Y, Z)|Y ]E[Sθ(Y,Z)|Y ]ᵀ.

The proof is given in Appendix A.3.1. This formula has two main interests:

• the first two terms involve the complete likelihood and can, most of the times, be easily
computed;

• the last term is null when evaluated at θ̂ = arg max log pθ(Y ) since p′θ(Y )|
θ̂

= 0.
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Case of a Poisson mixture. Consider a mixture model (2.1) where F (γk) = P(γk). The
complete log-likelihood is

log pθ(Y,Z) =
∑
i,k

Zik [log πk − γk + Yi log γk − log(Yi!)]

where πK = 1−
∑

k<K πk. The first derivatives are

∂πk log pθ(Y, Z) =

∑
i Zik
πk

−
∑

i ZiK
πK

and ∂γk log pθ(Y, Z) = −
∑
i

Zik +

∑
i ZikYi
γk

and the second derivatives:

∂2
π2
k

log pθ(Y, Z) = −
∑

i Zik
π2
k

+

∑
i ZiK
π2
K

, ∂2
πk,π`

log pθ(Y,Z) =

∑
i ZiK
π2
K

and

∂2
γ2k

log pθ(Y,Z) = −
∑

i ZikYi
γ2
k

, ∂2
γk,γ`

log pθ(Y, Z) = 0.

The first term of Prop. 2.9 requires the calculation of the following moments, denoting here
EY (·) = E(·|Y ):

EY (
∑

i Zik) =
∑

i τik =: Nk, EY (
∑

i ZikYi) =
∑

i τikYi =: Sk.

The second term requires these of

EY [(
∑

i Zik) (
∑

i Zi`)] = EY
(∑

i ZikZj` +
∑

i 6=j ZikZj`

)
=

∑
i EY (ZikZj`) +

∑
i 6=j EY (Zik)EY (Zj`)

=
∑

i δk`τik +
∑

i 6=j τikτj` = δk`Nk +NkN` −
∑

i τikτi`,

E [(
∑

i ZikYi) (
∑

i Zi`)] = δk`Sk + SkN` −
∑

i Yiτikτi`,
EY [(

∑
i ZikYi) (

∑
i Zi`Yi)] = δk`Qk + SkS` −

∑
i Y

2
i τikτi`,

where Qk =
∑

i Y
2
i τik and because ZikZi` = 0 if k 6= `.

2.3.6 How many states?

The number of hidden states K is not known general. Because a model with K − 1 classes is
nested in a model with K classes, the likelihood increases as well and is therefore not a relevant
criterion to estimate K. Also note that the dimension of the parameter θ increases with K.

The most common strategy to estimate K is based on penalized likelihood criteria. We
define θ̂K as the maximum likelihood estimate of θ for a model with K components:

θ̂K = arg max
θ∈ΘK

log pθ(Y )

where ΘK stands for the parameter space for a mixture model with K components. A penalized
likelihood estimate of K is defined as

K̂ = arg max
K

(
log p

θ̂K
(Y )− pen(K)

)
.
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BIC. The most commonly used criterion is the Bayesian information criterion (BIC, Schwarz
(1978)), which is originally defined in a Bayesian setting with three levels of hierarchy:

1. a prior distribution p(K) for the number of components;

2. a conditional distribution p(θ|K) for the parameter θ given the number of components;

3. a likelihood pθ(Y ) which corresponds to the conditional distribution of the observations Y
given the parameters: pθ(Y ) = p(Y |θ,K).

The model selection problem is then rephrased in terms of conditional distribution of K given
the observations:

p(K|Y ) =
p(Y,K)

p(Y )
=
p(K)

∫
p(Y |θ,K)p(θ|K) dθ

p(Y )
.

Ideally, one would choose

K̂ = arg max
K

p(K|Y ) = arg max
K

(log p(K) + log p(Y |K))

= arg max
K

(
log p(K) + log

∫
p(Y |θ,K)p(θ|K) dθ

)
.

The main difficulty is raised by the evaluation of the last integral for which a Laplace approxi-
mation is used to show the following proposition.

Proposition 2.10 Under regularity conditions,

log p(Y |K) = log p
θ̂K

(Y )− dK
2

log n+O(1).

where dK denotes the number of independent parameters in a model with K components.

A detailed proof of this result can be found in Lebarbier and Mary-Huard (2006), together
with precise comparative study between BIC and another popular model selection criterion:
AIC (Akaike (1974)).

As the term log p(K) remains fix when n grows large, it is neglected to define the BIC
selection criterion, which is defined as follows.

Definition 2.4

K̂BIC = arg max
K

(
log p

θ̂K
(Y )− dK

2
log n

)
.

Integrated Complete Likelihood (ICL). Using Proposition 2.2, the BIC criterion can be
rewritten as

log p
θ̂K

(Y )− dK
2

log n = E
θ̂K

[
log p

θ̂K
(Y,Z)|Y

]
− E

θ̂K

[
log p

θ̂K
(Z|Y )|Y

]
− dK

2
log n.

Remind that −E
θ̂K

[
log p

θ̂K
(Z|Y )|Y

]
is an entropy term, which is small when observation are

classified with reasonable confidence. Biernacki et al. (2000) propose to account for the classi-
fication uncertainty in the selection of K, by adding this term to the penalty, which results in
the following criterion.

Definition 2.5

K̂ICL = arg max
K

(
E
θ̂K

[
log p

θ̂K
(Y,Z)|Y

]
− dK

2
log n

)
.

This criterion can be derived in a similar way as BIC, based on the conditional probability
p(K|Y, Z). In the original paper Biernacki et al. (2000), the authors use an estimate Ẑ of Z
to compute the criterion. The form given in Definition 2.5 corresponds to the one given in
McLahan and Peel (2000).
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Illustration. The following figures illustrate the behavior of this two criteria for the nematode
gene expression data (Ex. 2.1.1). We see that BIC favors the fit to the marginal distribution of
the observation, whereas ICL favors the separation between the components.

Figure 2.7: BIC and ICL criteria for the choice of a Gaussian mixture model for the nematode
gene expression data as a function of the number of groups K. 4 : equal variances, O :
heterogeneous variances. Solid lines: BIC, dashed lines: ICL. (same data as in Fig. 2.1)

Figure 2.8: Comparison of the homogeneous variance mixture models selected with BIC (left)
and ICL (right) for the nematode gene expression data. (same data as in Fig. 2.1)

19



Figure 2.9: Comparison of the heterogeneous variance mixture models selected with BIC (left)
and ICL (right) for the nematode gene expression data. (same data as in Fig. 2.1)

2.4 Classification

As mentioned in the introduction, classification is often the main aim when using a mixture
model. Maximum likelihood inference provides estimates of the parameters. The EM algorithm
also gives access, as a by product, to some information about the conditional distribution of
the hidden classes Z conditional to the observed data Y but no formal classification of the
observation into groups.

Soft classification. The classification of observations into groups is not always necessary (or
relevant) and a soft classification is provided by the τik = P (Zi = k|Y ). This probability gives a
measure of the confidence with which an observation could be classified into a given group. The
uncertainty of the classification can be summarized by the conditional entropy of Zi, sometimes
referred to as the classification uncertainty for observation i:

H[pθ(Zi|Y )] = H[pθ(Zi|Yi)] = −
∑
k

τik log τik.

Note that the entropy of the whole conditional distribution of Z given Y is simply the sum of
all the individual’s uncertainties (see (2.2) p.14).

Hard classification. When observations need to be classified into groups, the most common
rule is the ’maximum a posteriori’ (MAP) rule.

Definition 2.6 The MAP classification rule is given by:

Ẑ = arg max
z
pθ(Z = z|Y ).

The MAP rule can be applied to each observation label Zi as

Ẑi = arg max
k

τik

to the whole set of label Z. In the case of mixture, the two are equivalent:

Ẑ = arg max
z
pθ(Z = z|Y ) = (Ẑi)i

since the Zi are independent conditionally on Y .
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3 Dependent hidden variables: Hidden Markov models and oth-
ers

We now consider unsupervised classification problems in which the data are linearly organized.
Such situations are faced in many applications such as time series analysis or signal processing,
where observations are collected along time. Many genomic applications also fit this framework
as measurements are collected at places (loci) located along the genome.

In such applications, it does not seem natural anymore to assume that the hidden status are
independent, but rather to assume that they depend on each other. The Markovian dependency
structure is one of the most simple to be considered and a strong attention has been paid to it
for several decades now, resulting in hidden Markov models (HMMs).

3.1 Examples

3.1.1 Copy number variation

Genome rearrangements such as losses or amplifications of large genomic regions are associated
with many disorders, including cancers or mental retardation. Microarrays can be used for many
purposes and allow to observe such events. Comparative genomic hybridization (CGH) arrays
provide, for a series of probes t = 1, . . . n located along the genome, a fluorescence measurement
Yt that varies according to the relative number of copies of DNA at the position between a test
(e.g. tumor) and a reference (normal) sample.

Figure 3.1: CGHarray signal. Vertical blocks refer to the 24 chromosomes (22 + X + Y). The
color code results from the analysis: yellow = normal (= 2 copies), green = loss (< 2 copies),
red = amplification (> 2 copies), blue = massive amplification (� 2 copies). The annotation
results from the cytogenetic data presented in Fig. 3.2. From Hupé (2008).

Figure 3.1 provides an example of such data and Figure 3.2 provides the corresponding
cytogenetic picture that gives a more precise picture (but at a much higher cost) of the alterations
and translocations that actually occurred in the sample.

Model. A natural way to analyze such data is assume that the measure Yt have a mixture
distribution,

Yt|Zt = k ∼ F (γk)

depending of the hidden status Zt of the probe, e.g. Zt ∈ {loss,normal, gain} (colored in red,
yellow and green respectively in Figure 3.1). As the probes are linearly organized along the
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genome, it is not realistic to assume that the Zt are independent (neighbor probes are likely to
share the same status), so we rather suppose that Z = (Zt) is an homogeneous Markov chain

Zt ∼MC(ν, π)

where ν stands for the initial distribution over J1,KK and π for the K ×K transition matrix:

νk = P (Z1 = k), πk,` = P (Zt+1 = `|Zt = k).

An HMM model including several refinements was proposed by Fridlyand et al. (2004) for the
analysis of CGH arrays.

Figure 3.2: Karyotype of tumor cell with annotated translocations to which sole CGH experi-
ments do not give access (same data as Figure 3.1) From Hupé (2008).

3.1.2 Genetic structure of a population with admixture

In Section 2.1.2, one was interested in classifying regions of an individual’s chromosome based
on its genotype at a series of loci t = 1, . . . , T . In the Chapter 2, the unknown population origins
at each loci Zt were supposed to be independent from one loci to the next. The dependency
between neighbor loci can be accounted for using the following model:

(Zi) iid Zi = (Zi1, . . . , ZiT ),

(Zit)t ∼ MC(ν, π),

(Yit)it indep. | (Zit) ∼ F (γZit),

with multinomial emission distribution F (γk) =M(1; γk).

3.1.3 Sequence evolution

Phylogeny aims at reconstructing the evolutionary history of species, based on the observation of
their genome. For a set I species, the observed data consist in the sequences Yi = (Yi1, . . . , YiT )
at T positions (after sequence alignment), where each Yit is one of the K = four nucleotides a,
c, g or t. Note that all observed sequences are contemporary, i.e. observable today, and that
we miss ancestral sequences from which they derive. Maximum likelihood approaches have been
introduced in this field by Felsenstein (1981), who first showed that conditional independences
can be used to compute the likelihoods efficiently.
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We further assume that a phylogeny is available, providing the topology of the evolutionary
tree. The inference of this tree will not be discussed in this course.

Z9

Z8

Z7

Z6

Y1 Y2 Y3 Y4 Y5

d8

d7

d6

d5d4

d3

d2d1

Figure 3.3: Sequence evolution model. Yi sequences are contemporary (and observed), Zj se-
quences are ancestral sequences (not observed). Branch lengths di refer to the evolutionary time
from one sequence to the next.

The simplest model assumes that each nucleotide at each locus evolves independently from
each other, according to a continuous time Markov process with infinitesimal mutation rates
ρk` = ρk→`, with k, ` ∈ {a, c, g, t}.

The aim is then to estimate the mutation rates and the branch lengths of the phylogenetic tree.
The parameters of the models is then made of the branch lengths d = (di) and the mutation
rates ρ = (ρk`):

θ = (d, ρ)

This problem has some connexions with unsupervised classification as it involves hidden vari-
ables, which are the sequences of the species located at the interior nodes of the phylogenetic
tree. These missing variables correspond to ancestral sequences that existed in the past Zi.
Recovering these ancestral sequences amounts at predicting their nucleotides at each locus t,
which is an unsupervised classification problem.

3.2 Hidden Markov model

3.2.1 Model

Definition 3.1 The general hidden Markov chain model is defined as follows:

(Zt)t ∼ MC(ν, π),
(Yt)t indep. |(Zt), Yi|(Zi = k) ∼ Fk = F (γk),

(3.1)

The Markov chain MC(ν, π) is defined over the state space J1,KK, K being the number of hidden
states.

The parameters of this model are gathered into

θ = (ν, π, γ).
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Marginal distribution. We denote νt the distribution of the hidden state at time t:

νt = (νt1, . . . , νtK), νtk = P (Zt = k).

As (Zt) is an homogeneous Markov chain, we have

νt = νᵀπt−1

and the marginal distribution of observation Yt is a mixture with proportion νt:

Yt ∼
∑
k

νtkf(·; γk).

(Zt) is often further assumed to be a stationary Markov chain, meaning that

ν = νᵀπ.

In this case νt = ν at all t, so the marginal distribution of Yt remains the same mixture along
time:

Yt ∼
∑
k

νkf(·; γk).

3.2.2 Dependency structure

Z1 Zt Zt+1 Zn

Y1 Yt Yt+1 Yn

Figure 3.4: Graphical representation of an hidden Markov model.

Graphical model. We can derive the following various properties from the topology of the
graph. Denoting Zts = (Zs, . . . Zt) (for s ≤ t and the same for Y t

s )n we have that

(a) all paths from Y t
1 to Zt+1 go through Zt1, meaning that Zt+1 is independent from Y t

1 condi-
tionally on Zt1;

(b) all paths from Zt−1
1 to Zt+1 go through Zt, meaning that Zt+1 is independent from Zt−1

1

conditionally on Zt (i.e. (Zt) is a Markov chain);

(c) all paths from Y t
1 to Y t+1

1 go through Zt+1 meaning that Y t+1
1 is independent from Y t

1 to
conditionally on Zt+1 (and the same holds with Zt).

As a consequence, the conditional distribution of the hidden states (Zt) conditional on the
observed data Y = Y n

1 is still a Markov chain. Indeed,

p(Zt+1|Zt1, Y n
1 ) = p(Zt+1|Zt1, Y n

t+1) (a)
= p(Zt+1|Zt, Y n

t+1) (b)
= p(Zt+1|Zt, Y n

1 ) (c)

Similar arguments will be used in the ’Forward’ and ’Backward’ recursions given in Proposition
3.1 p.25.
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3.3 Inference

For a general presentation of hidden Markov models and their inference, one may refer to Cappé
et al. (2005). In this section, we only consider EM-like algorithms.

3.3.1 Likelihoods

The marginal (or ’observed’) log-likelihood is

log pθ(Y ) = log

[∑
Z

pθ(Z)pθ(Y |Z)

]

= log

∑
Z

∏
k

νZ1k
k

∏
t≥2

∏
k,`

π
Zt−1,kZt,`
k`

∏
t,k

f(Yt; γk)
Ztk

 .
The complete log-likelihood corresponds to one term of the sum, that is

log pθ(Y,Z) = log [pθ(Z)pθ(Y |Z)]

=
∑
k

Z1k log νk +
∑
t≥2

∑
k,`

Zt−1,kZt,` log πk` +
∑
t,k

Ztk log f(Yt; γk).

Remark. Note that the form of the complete likelihood derives from the graphical model given
in Figure 3.4 where Z1 is the root (with no parent), each Zt (t ≥ 2) has parent Zt−1 and each
Yt has parent Zt. Using Definition A.1 (p.58) of directed graphical models, we get

pθ(Y,Z) = pθ(Z1)

∏
t≥2

pθ(Zt|Zt−1)

(∏
t

pθ(Yt|Zt)

)
.

3.3.2 EM: Forward-Backward algorithm

The likelihood decomposition given in Proposition 2.2 p.12 and the resulting EM Algorithm 2.1
p.12, still hold. We remind that the M step consist in the maximization of

E[log pθ(Y, Z)|Y ] =
∑
k

τ1k log νk +
∑
t≥2

∑
k,`

ηtk` log πk` +
∑
t,k

τtk log f(Yi; γk)

where

τtk = E[Ztk|Y ] = P (Zt = k|Y ), ηtk` = E[Zt−1,kZt,`|Y ] = P (Zt−1 = k, Zt = `|Y ).

Remark. Due to the dependency structure, τtk is not equal to P (Zt = k|Yt), as opposed to the
mixture model. More generally, the conditional distribution p(Z|Y ) does not factorize over t
any more.

Proposition 3.1 The conditional probabilities τtk and ηtk` can be computed via the two following
recursions.

Forward: denoting Ftk = Pθ(Zt = k|Y t
1 ), with Y t

1 = (Y1, . . . , Yt), compute

F1` ∝ ν`f`(Y1),

Ft` ∝ f`(Yt)
∑
k

Ft−1,kπk`

such that, for all t :
∑

k Ft` = 1.
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Backward: starting with τnk = Fnk; compute

Gt+1,` =
∑
k

πk`Ftk, ηtk` = πk`
τt+1,`

Gt+1,`
Ftk, τtk =

∑
`

ηtk`.

Proof:

Forward: The first step relies on Bayes formula:

F1` = P (Z1 = `|Y1) = p(Y1|Z1 = `)P (Z1 = `) /p(Y1) ∝ ν`f`(Y1)

and the recursion follows as

Ft` = P (Zt = `|Y t
1 ) =

∑
k

P (Zt−1 = k, Zt = `|Y t
1 )

=
∑
k

p(Zt = `, Zt−1 = k, Y t
1 )

p(Y t
1 )

=
∑
k

p(Y t−1
1 )P (Zt−1 = k|Y t−1

1 )P (Zt = `|Zt−1 = k)p(Yt|Zt = `)

p(Y t
1 )

(using conditional independences, from the past to present t)

=
p(Y t−1

1 )

p(Y t
1 )

f`(Yt)
∑
k

πk,`Ft−1,k.

Note that the normalizing coefficient is p(Y t
1 )/p(Y t−1

1 ) = p(Yt|Y t−1
1 ).

Backward: The initialization is given by the last step of the forward recursion:

τnk = P (Zn = k|Y ) = P (Z1 = k|Y n
1 ) = Fnk

and the recursion follows as

τtk = P (Zt = k|Y n
1 ) =

∑
`

P (Zt = k, Zt+1 = `|Y n
1 )︸ ︷︷ ︸

ηtk`

=
∑
`

P (Zt = k, Zt+1 = `, Y n
1 )

p(Y n
1 )

=
∑
`

p(Y t
1 )P (Zt = k|Y t

1 )P (Zt+1 = `|Zt = k)p(Y n
t+1|Zt+1 = `)

p(Y n
1 )

=
∑
`

P (Zt = k|Y t
1 )P (Zt+1 = `|Zt = k)

p(Y t
1 )p(Y n

t+1|Zt+1 = `)

p(Y n
1 )

= Ftk
∑
`

πk`
p(Y t

1 )p(Y n
t+1|Zt+1 = `)

p(Y n
1 )

and

p(Y t
1 )p(Y n

t+1|Zt+1 = `)

p(Y n
1 )

=
p(Y t

1 )p(Y n
t+1|Zt+1 = `)

p(Y n
1 )

p(Y t
1 |Zt+1 = `)

p(Y t
1 |Zt+1 = `)

=
p(Y t

1 )p(Y n
1 |Zt+1 = `)

p(Y n
1 )p(Y t

1 |Zt+1 = `)
=

P (Zt+1 = `|Y n
1 )

P (Zt+1 = `|Y t
1 )

(inverting the conditioning: P (A|B)/P (A) = P (B|A)/P (B))

=
τt+1,`

P (Zt+1 = `|Y t
1 )

where P (Zt+1 = `|Y t
1 ) =

∑
k P (Zt+1 = `, Zt = k|Y t

1 ) =
∑

k Ftkπk` =: Gt+1,`.
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Remarks.

1. The computational complexity of this double recursion is O(Kn2).

2. The normalization constant p(Yt|Y t−1
1 ) of the forward step can be stored to compute the

log-likelihood as

log p(Y ) = log p(Y1) +
∑
t≥2

log p(Yt|Y t−1
1 ).

3. The Forward formula states that Ft` = P (Zt = `|Y t
1 ) only depends on Yt and on Ft−1,k,

which means that, conditional on Y t
1 and Zt−1, Zt is independent from Zt−2

1 . (Zt|Y t
1 )

is therefore an (heterogeneous) Markov chain. The same formula further provides the
transition probabilities of this Markov chain:

Pθ(Zt = `|Y t
1 , Zt−1 = k) =

πk`f`(Yt)∑
j πkjfj(Yt)

.

Conditional on Y t
1 , the transitions πk` are biased according to the likelihood of the data

under the arrival state f`(Yt).

3.4 Classification

A classification at each position t can be defined based on the MAP rule (see Definition 2.6,
p.20), applied to the marginal distribution of each label given the data:

Ẑt = arg max
k

P (Zt = k|Y ) = arg max
k

τtk.

3.4.1 Joint MAP: Viterbi algorithm

As mentioned in Section 2.4, when the labels are not independent, the marginal MAP does not
retrieve the joint MAP. In many application, one is interested in the joint MAP, as it corresponds
to the most probable hidden path given the observations:

Ẑ = arg max
z
P (Z = z|Y ).

Proposition 3.2 The most probable hidden path given the data is given by the following forward-
backward recursion:

Forward: V1k = νkfk(Y1) and for t ≥ 2:

Vt` = max
k

Vt−1,kπk`f`(Yt),

St−1(`) = arg max
k

Vt−1,kπk`f`(Yt).

Backward: Ẑn = arg maxk Vnk and for t < n:

Ẑt = St(Ẑt+1).
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Proof: First note that

arg max
z
P (Z = z|Y ) = arg max

z
p(Z = z, Y )

The forward recursion consists in a succession of optimal choices as for the hidden label at the
preceding times, so that

Vtk = max
zt−1
1

p(Zt−1
1 = zt−1

1 , zt = k, Y t
1 )

and, finally,
max
k

Vnk = max
z

p(Z = z, Y ).

The backward recursion traces back the succession of the optimal choices and retrieves the
optimal path. �
The rational (for n = 4) behind this algorithm is that, for a function of the form2

F (z4
1) = f1(z1) + f2(z1, z2) + f3(z2, z3) + f4(z3, z4),

we have the decomposition

max
z41

F (z4
1) = max

z4

[
max
z3

(
max
z2

{
max
z1

[f1(z1) + f2(z1, z2)] + f3(z2, z3)

}
+ f4(z3, z4)

)]
= max

z4

[
max
z3

(
max
z2

{
F 2

1 (z2) + f3(z2, z3)
}

+ f4(z3, z4)

)]
where F 2

1 (z2) = max
z1

f1(z1) + f2(z1, z2)

= max
z4

[
max
z3

(
F 3

1 (z3) + f4(z3, z4)
)]

where F 3
1 (z3) = max

z2
F 2

1 (z2) + f3(z2, z3)

= max
z4

[
F 4

1 (z4)
]

where F 4
1 (z4) = max

z3
F 3

1 (z3) + f4(z3, z4)

so both the maximal value of F and the optimal solution ẑ4
1 are obtained by storing the F t1(zt)

and the ẑt−1(zt) = arg maxzt−1 F
t−1
1 (zt−1) + f(zt−1, zt).

Remark. The calculation of the Viterbi path sometimes raises numerical issues due the addition
of a large number of small terms. It is therefore high recommended to make all calculation in a
log scale, that is

log Vt` = max
k

(log Vt−1,k + log πk` + log f`(Y1)) ,

St−1(`) = arg max
k

(log Vt−1,k + log πk` + log f`(Y1)) .

Illustration. An example of the difference between the marginal and the joint MAP classifi-
cation rule is given in Figure 3.5 where an isolated point is classified as green by the marginal
MAP rule, whereas it is classified as red (because of tis neighbors) by the Viterbi algorithm.

2That is to take f1(Z1) = log (νz1fz1(Y1)), ft(zt−1, zt)) = log
(
πzt−1,ztfzt(Yt)

)
and F (z41) = log p(z41 , Y

4
1 )
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Figure 3.5: Comparison of the marginal MAP (left) and the joint MAP (Viterbi) classification
rule on a simulated example.

3.4.2 Posterior entropy

As seen for mixture models, the entropy provides some insight about the certainty of the clas-
sification. When considering the whole hidden path, this amounts at computing (dropping the
index θ for the sake of clarity)

H[p(Z|Y )] = −E[log p(Z|Y )|Y ]

Because Z is an (heterogeneous) Markov conditionally on Y , we have that

H[p(Z|Y )] = −E

[
log p(Z1|Y ) +

n∑
t=2

log p(Zt|Zt−1, Y )|Y

]
The expectation of each term of the sum have to be taken wrt to Z1 and to (Zt−1, Zt), respec-
tively, so we have

E[log p(Z1|Y )] =
∑
k

P (Z1 = k|Y ) logP (Z1 = k|Y ) =
∑
k

τ1k log τ1k

and, using p(Zt|Zt−1, Y ) = p(Zt, Zt−1|Y )/p(Zt−1|Y ),

E[log p(Zt|Zt−1Y )|Y ] =
∑
k,`

P (Zt−1 = k, Zt = `|Y ) logP (Zt = `|Zt−1 = k, Y )

=
∑
k,`

ηtk`(log ηtk` − log τt−1,k).

So the conditional entropy can be computed as a by product of the backward step:

H[p(Z|Y )] = −
∑
k

τ1k log τ1k −
n∑
t=2

∑
k,`

ηtk`(log ηtk` − log τt−1,k).

3.5 Some extensions

3.5.1 Connexion with the Kalman filter

The so-called Kalman filter is widely used in signal processing to retrieve an original signal (Zt)
from a noisy signal (Yt). The model is the following

Yt = Ztβ + Ft, Zt = Zt−1π + Et, Z1 ∼ N (0, 1)
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where E = (Et) and F = (Ft) are independent Gaussian white noises with respective variances
V(Et) = 1−π2 (without loss of generality) and V(Ft) = σ2. Note that the process Z is stationary
with zero mean and unit variance. The parameters of this model are π and γ = (β, σ2).

The complete log-likelihood is then

log pθ(Y,Z) = log pθ(Z) + log pθ(Y |Z)

= log pθ(Z1) +
∑
t≥2

log pθ(Zt|Zt−1) +
∑
t

log pθ(Yt|Zt)

which only involves linear and quadratic functions of the Gaussian rv’s Zt and Yt. So for
the E step we only need the conditional mean and variance of the Zt’s, which can be derived
using standard results on Gaussian vectors. The parameter estimation at the M step results in
(weighted) linear regression estimates (see Ghahramani and Hinton (1996)).

3.5.2 Maximum likelihood inference for sequence evolution

We now consider the sequence evolution problem introduced in 3.1.3.

Transition probabilities. According to the mutation model defined above, if sequence Y ′ =
(Y ′t ) derives from sequence Y = (Yt) after a duration d, then the transition probability from one
to the other is given by

P (Y ′t = `|Yt = k) = [exp(dρ)]k` =: πk`(d)

where [exp(sρ)] stands for the matrix exponential of sρ. Remind that, the nucleotides at different
positions t are supposed to evolve independently.

For identifiability reasons, such mutation models are supposed to be time reversible, meaning
that the rate matrix satisfies

νkρk` = ν`ρ`k

where ν denotes the stationary distribution of the Markov chain. This assumption means that
the evolutionary process behaves similarly forward and backward in time.

Complete likelihood. If the case of the phylogenetic tree from Figure 3.3, the complete
likelihood can be written using the Definition A.1 of directed graphical models as

pθ(Y, Z) = pθ(Z2I−1)×
2I−2∏
j=I+1

pθ(Zj |Zpar(j))×
I∏
i=1

pθ(Yi|Zpar(i))

where par(i) denotes the parent node of node i. An important property of such model is that
the corresponding graph is a tree, so each variable has only one parent. Denoting di the duration
elapsed between sequences Ypar(i) and Yi, we have pθ(Yit = ` |Ypar(i),t = k) = πk,`(di) so we have,
thank to site independence, for x = (xt) and y = (yt):

pθ(Yi = y |Ypar(i) = x) =
∏
t

πxt,yt(di) =: πx,y(di).

E step. As for the E step, the conditional distribution of the unobserved sequences can be
computed via the upward-downward recursions (see Durand et al. (2004) for a general presen-
tation and Lartillot (2014) for genomic applications). As for the HMM, these two recursions
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relies on conditional independences that are depicted in the graphical model given in Figure 3.3.
Define:

Ljz = pθ(Ysub(j)|Zj = z),

Fjz = pθ(Zj = z |Ysub(j)) ∝ νzLjz,

where sub(j) denotes the set of indices of the observed sequences located downward Zj in the
tree (excluding Zj itself). We now use the fact that the graphical model is a binary tree so each
inside node j has only two offsprings, arbitrarily called ’left(j)’ and ’right(j)’. We can then get
the following recursion:

Ljz =

[∑
x

pθ(Zleft(j) = x |Zj = z)Lleft(j),x

][∑
y

pθ(Zright(j) = y |Zj = z)Lright(j),y

]

=

[∑
x

πz,x(dleft(j))Lleft(j),x

][∑
y

πz,y(dright(j))Lright(j),y

]
.

The recursion is initialized with observed nodes i as

Liy = I{Yi = y}, i ∈ J1, IK.

For Figure 3.3, we get

L6z =

[∑
x

πzx(d1)L1x

][∑
y

πzy(d2)L2y

]
,

L7z =

[∑
x

πzx(d4)L4x

][∑
y

πzy(d5)L5y

]
,

L8z =

[∑
x

πzx(d6)L6x

][∑
y

πzy(d3)L3y

]
,

L9z =

[∑
x

πzx(d8)L8x

][∑
y

πzy(d7)L7y

]
The observed likelihood is a by-product of the recursion as

pθ(Y ) =
∑
k

νkL9k, where νk =
∏
t

νkt .

A downward (backward-like) recursion can be derived in the same way as the backward
recursion for HMM, denoting

τjx = pθ(Zj = x|Y )

ηjxy = pθ(Zpar(j) = x, Zj = y|Y ),

we first note that τ2I−1,z = F2I−1,z. We then have

τjy =
∑
x

ηjxy

=
1

pθ(Y )

∑
x

pθ(Zpar(j) = x, Zj = y, Y )

=
1

pθ(Y )

∑
x

pθ(Ysub(j))pθ(Zj = y|Ysub(j))pθ(Zpar(j) = x|Zj = y)pθ(Ysub(j)
|Zpar(j) = x)

=
pθ(Ysub(j))

pθ(Y )
Fjy

∑
x

pθ(Zpar(j) = x|Zj = y)pθ(Ysub(j)
|Zpar(j) = x)
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reminding that, thanks to reversibility

pθ(Zpar(j) = x|Zj = y) = νxπxy(dj)/νy.

We now only have to compute

pθ(Ysub(j)
|Zpar(j) = x)pθ(Ysub(j))

pθ(Y )
=

pθ(Ysub(j)
|Zpar(j) = x)pθ(Ysub(j)|Zpar(j) = x)pθ(Ysub(j))

pθ(Y )pθ(Ysub(j)
|Zpar(j) = x)

=
pθ(Y |Zpar(j) = x)pθ(Ysub(j))

pθ(Y )pθ(Ysub(j)
|Zpar(j) = x)

=
pθ(Zpar(j) = x|Y )

pθ(Zpar(j) = x|Y
sub(j)

)

= τpar(j)x

/
pθ(Zpar(j) = x|Y

sub(j)
)

where

pθ(Zpar(j) = x|Y
sub(j)

) =
∑
y

pθ(Zpar(j) = x, Zj = y|Y
sub(j)

)

=
∑
y

Fjypθ(Zpar(j) = x|Zj = y).

Thanks to site independence, all summations over x, y or z can be made independently from
each other, so the computation complexity is proportional to the number of sequences I, their
common length n and the squared number of possible states K, that is the four nucleotides.

3.6 Some applications of HMM in computational biology

3.6.1 Gene detection using tilling array data

Tilling arrays rely on the microarray technology. They are constituted of probes (almost) regu-
larly spread along the genome of the species under study. As an example, about n = 105 probes
are spread along each chromosome of the model plant A. Thaliana. When applied to transcrip-
tome (i.e. to all the transcripts present in the cell), tilling arrays give access to a measure of
the level of transcription at each probe location. As it does not rely on any prior annotation
of the genome, this technology allows us to discover new genes or new regions that are actually
transcribed. Figure 3.6 gives an example of the repartition of the probes along the genome and
of the available annotation, which can be used to validate model-based predictions.
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Figure 3.6: Distribution of the probes along a portion of the genome of A. thaliana. Blue
numbers: position (in bp) along the genome. Blue, cyan and purple arrows: gene locations
according to three different genome annotations, cyan being the consensus. Pink dots: observed
expressed sequence tags (EST). Box color: gray: Pr{Zt = ◦|Y } = τt◦, black: τt=, red: τt+,
green: τt−. Source: Bérard et al. (2011).

The two-color version of this technology allows us to compare two samples collected under
two different conditions, such as two different tissues (e.g. leaf and seed of a plant). Four
categories of probes are then expected to be observed: non transcribed probes (i.e., transcribed
in none of the two conditions, labeled ’◦’), probes that are transcribed equally under the two
conditions (’=’), probes that are more transcribed in the first condition than in the second (’+’)
and the probes displaying the opposite difference (’−’). Figure 3.7 displays and example of such
data.

Figure 3.7: Four types of probes from a tilling array experiment on A. thaliana. x-axis = Yt1,
y-axis = Yt2. Each dot represents a probe. The color code is the same as for the boxes in Fig.
3.6, but probes are classified according to the most probable hidden path.

Obviously, an HMM with four classes {◦,=,+,−} can be used to distinguish between these
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four categories, accounting for the repartition of the probes along the genome. Denoting Yt =
(Yt1, Yt2) the signal observed at probe t under condition 1 and 2, respectively, we consider the
model from Definition 3.1, where each emission distribution Fk is typically a bivariate normal
distribution:

F (γk) = N (µk,Σk).

Note that the shape of the variance matrix Σk has to be carefully thought to get meaningful
results (see Bérard et al. (2011)).

This modeling results in both the probability for each probe to belong to each of the four
categories {◦,=,+,−} (displayed in Figure 3.7) and in their classification according to the most
probable hidden path (displayed in Figure 3.6). In Figure 3.7, black, red and green probes are
in good concordance with known genes. Interestingly, a series of 6 black probes around position
1,869,000 does not match with any known gene, but seems to be confirmed by observed ESTs.

3.6.2 Pair HMM for sequence alignment

Sequence alignment is a elementary tool for the comparison of genomic sequences. The problem
is to find the ’best’ possible alignment between two sequences A = (A1, . . . , An) and B =
(B1, . . . , Bm). Suppose we consider the following sequences

A = (gatctgaac), B = (gacgtta).

A possible alignment of these two sequences would be

A : g a t c – t g a a c
B : g a – c g t – t a –

(3.2)

where ’–’ stands for a deletion (or ’gap’) in the sequence or, symmetrically, an insertion in the
other sequence. A pair HMM model can be defined to find such an alignment.

Pair hidden Markov model. A pair HMM is an HMM resulting in paired observed se-
quences. For the purpose of sequence alignment, the model can be defined as follows (using the
notations from Definition 3.1).

• K = 3 hidden states are considered: 0 = match, 1 = gap in sequence A (or insertion in
sequence B), 2 = gap in sequence B (or insertion in sequence A).

• Due to the intrinsic symmetry of the problem, the transition matrix has the form

π =

 π00 π01 π01

π10 π11 π12

π10 π12 π11

 ,

where the transition probabilities π00 and π10 are expected to be large, whereas all others
are expected to be small.

• A specificity of the pair HMM for sequence alignment is that the emission distributions
do not have the same domain. Namely, all emission distributions Fk (k = 0, 1, 2) are
multinomial distributions: Fk =M(1, γk), but γ0 is a distribution over {a, c, g, t}2, γ1 is a
distribution over ′ −′ ×{a, c, g, t} and γ2 is a distribution over {a, c, g, t} ×′ −′.

Under this model, the alignment given in (3.2) can be rephrased as

Zt 0 2 2 0 1 0 2 0 0 2

At g a t c - t g a a c
Bt g a - c g t - t a -
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The hidden path Z is often as successions of moves along the two sequences as represented in
Figure 3.8.

A
g a t c t g a a c

g ↘
a ↘

−→
c ↘

B g ↓
t ↘

−→
t ↘
a ↘

−→

Figure 3.8: Hidden path corresponding to the alignment (3.2) of the two sequences A and B.
Diagonal arrows: matches and mismatches, vertical: gap in sequence A, horizontal: gap in
sequence B.

Sequence alignment. In many bioinformatics applications, the inference of the parameters
π and γ is not considered and the parameters are set to arbitrary values constants, interpreted
in terms of costs:

• − log π01 is interpreted as the cost for opening a gap and − log π11 as the cost for continuing
a gap. π12 is sometimes set to 0 to avoid the alternation of gaps between the two sequences.

• The distributions γk often have a very simple form (both to account for symmetries and
to ease interpretation). Typically:

γ0(a, b) = γ+
0 if a = b

γ0(a, b) = γ−0 if a 6= b,
γ1(−, b) = γ2(a,−) ∀(a, b)

where γ+
0 is larger than γ−0 . It is sometimes further assumed that γ1(−, b) = γ−0 . The

quantity − log γ−0 is then interpreted as the cost of a mismatch.

The main use of the HMM is then the determination of the alignment itself, that is the
determination of the most probable hidden path. This path can be retrieved via the Viterbi
algorithm, which is equivalent to the Smith & Waterman algorithm widely used in bioinformatics
(see e.g. Waterman (1995)).
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4 More complex dependency structures: Variational EM

Many models used in many applications display complex dependency structures due, e.g., to
space-time organization or to interactions between entities. Biological networks constitute a
typical example where the interactions between entities (e.g. genes, proteins, metabolites) are
observed and where the goal is to better understand the underlying structure of the resulting
network.

Again, latent variable models can be useful to describe such an underlying structure. How-
ever, due to the complex dependency structure the conditional distribution of the unobserved
labels given the observations most often turns out to be intractable and approximations are
required.

4.1 Examples

4.1.1 Stochastic Block-Model

Consider a set of individuals (e.g. humans or proteins) i = 1, . . . , n between which the presence
or absence of interaction is observed as

Yij = I{i ∼ j} = Yji

where i ∼ j means that i interacts with j. The resulting data is called an interaction network
or, in social sciences, a social network as in Figure 4.1.

Figure 4.1: Example of a social network (Karate club from Zachary (1977)). Both pictures depict
the same network, only the (arbitrary) position of the nodes is changed. Left: unclustered (=
raw data), right: clustered in four groups.

One possible way to analyze such a network is to try to define groups of nodes sharing the
same connectivity behavior. This can be encoded in the following mixture model known as the
stochastic block-model (SBM: Nowicki and Snijders (2001)):

(Zi)i iid ∼ M(1;π), Zi ∈ J1,KK,
(Yij)i,j indep. | (Zi) ∼ B(γZiZj ). (4.1)
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Retrieving the latent labels Z allows to better understand the structure of the network, as in
the right panel of Figure 4.1.

Z1 Z2

Z3 Z4

Y12

Y13

Y14Y23

Y24

Y34

Figure 4.2: Graphical representation of the stochastic block-model.

4.1.2 Latent Block-Model

Consider a set of n genes (i = 1 . . . n) studied under p conditions (j = 1 . . . p). For each condition
j, we measure the expression level Yij of gene i. We want to determine groups of genes that are
preferentially expressed (or not expressed) in certain groups of conditions. Such a problem is
often refereed to as co-clustering or bi-clustering.

A natural way to describe such a structure is to assume that unobserved labels Ui and Vj
exist for genes and conditions, respectively. This results in the following model

(Ui)i iid ∼ M(1;π),

(Vj)j iid ∼ M(1; ν),

(Yij)i,j indep. | (Ui), (Vj) ∼ N (µUiVj ;σ
2
UiVj )

or N (µUi,Vj , σ
2) for an homoscedastic version.

In this model, the set of hidden variables is Z = (U, V ) = ((Ui), (Vj)) and one main goal of the
inference is to retrieve it through its conditional distribution

pθ(Z|Y ) = pθ(U, V |Y ).
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U1

U2

U1

V1 V2 V2

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

Figure 4.3: Graphical representation of the latent block-model.

4.1.3 Bayesian inference for a mixture model

In a Bayesian perspective, the aim of inference is to provide the conditional distribution of the
parameters given the observations. In the case of the mixture models (with K components, K
being fixed), the model (2.1) must be completed with prior distribution for the parameters π
and γ, e.g. for a Poisson mixture model

π ∼ D(p), (4.2)

(γk)k iid ∼ Gam(a, b) (4.3)

where D stands for the Dirichlet distribution and p, a and b are called the hyper-parameters of
the model, as they control the distribution of the parameters.

Z1 Zi Zj Zn

Y1 Yi Yj Yn

π

γ

Figure 4.4: Graphical representation of the Bayesian mixture model.

4.2 Variational inference: VEM

We first consider frequentist inference. As seen in the preceding chapters, maximum likelihood
inference is most often achieved with the EM algorithm, the E step of which relies on the calcu-
lation of the conditional distribution pθ(Z|Y ). As seen before, the feasibility of the calculation
strongly relies on conditional independences allowing (or not) convenient factorizations.
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Graph moralization. One important issue in the calculation of the conditional distribution
pθ(Z|Y ) is due to the so-called moralization of the graphical model. Consider the simple example
of Figure 4.5 where variables A and B are marginally independent and where the distribution
of variable C depends on both A and B. In this setting, we have

p(A,B,C) = p(A)p(B)p(C|A,B)

so the joint conditional distribution of A and B given C is

p(A,B|C) =
p(A,B,C)

p(C)
=
p(A)p(B)p(C|A,B)

p(C)
,

which cannot be factorized to separate A and B. Although they are marginally independent,
A and B are conditionally dependent given C. This effect is called moralization as the parents
get ’married’ once their common offspring is observed. Note that the moralized graph is an
undirected graphical model, as defined in Definition A.2.

p(A,B,C) = p(A)p(B)p(C|A,B) p(A,B|C) = p(A,B,C)/p(C)

A B

C

A B

C

Figure 4.5: Moralization of a graph. Left: Joint distribution. Right: Conditional distribution
of the parents given the offspring.

Case of SBM. In the case of SBM, each couple of hidden variables (Zi, Zj) is dependent
conditionally on the edge Yij they share, since

p(Zi, Zj |Yij) =
p(Zi, Zj , Yij)

p(Yij)
=

p(Zi)p(Zj)p(Yij |Zi, Zj)∑
k,` p(Yij |Zi = k, Zj = `)P (Zi = k)P (Zj = `)

for which no factorization can be found. This results in the conditional dependency structure
depicted in Figure 4.6, which shows that the conditional dependency graph between the hidden
labels Zi is a clique3. So, the calculation of the conditional distribution pθ(Z|Y ) requires the
enumeration of the K possible configurations, which is impossible even for moderate sample
sizes n.

3A clique is a complete graph, that is a graph in which all nodes are connected with each other.
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Figure 4.6: Graphical model of the conditional distribution p(Z|Y ) of the hidden variables Zi
given the observed ones Yij in the stochastic block-model.

4.2.1 Variational approximation

As the calculation of p(Z|Y ) is intractable, the regular EM algorithm cannot be used and we
can only propose an approximate version of it, based on Proposition 2.5 p.14 which states that,
for any distribution q(Z),

log pθ(Y ) ≥ log pθ(Y )−KL[q(Z)||pθ(Z|Y )] = Eq[log pθ(Y,Z)] +H[q(Z)]. (4.4)

According to this inequality, the smaller the KL divergence, the better the lower bound. How-
ever, as pθ(Z|Y ) can not be computed, the search has to be restricted to a limited class of
distribution Q, so the KL divergence can not be 0. Hence, the following algorithm aims at
maximizing a lower bound of the likelihood, but not the likelihood itself.

Algorithm 4.1 Repeat until convergence:

Variational E step: given the current estimate θh of θ, compute the best possible approxima-
tion q̃(Z) of pθh(Z|Y ) as

q̃(Z) = arg min
q∈Q

KL[q(Z)||pθh(Z|Y )]

where Q is a given class of distributions;

M step: update the estimate of θ as

θh+1 = arg max
θ

Eq̃[log pθ(Y, Z)].

Remark. The name ’variational’ comes from the pseudo E step that amounts at minimizing a
functional (the KL divergence) with respect to a function (the distribution q(Z)). In the case of
SBM, the function is a distribution over a discrete space, so the optimization can be achieved
with standard tools. In the Bayesian context, we will deal with continuous distributions so
notions of calculus of variations will be needed.
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4.2.2 Mean-field approximation

The regular E step has been transformed into a variational E step (VE step), the aim of which
is to find the best approximation q̃ within a certain class of distributions Q. The choice of Q is
indeed crucial and results from a balance between the quality of the approximation (requiring Q
to be as large as possible) and the computational burden (requiring Q to be as small as possible).

The simplest class to be considered is the class of factorized distributions

Qfact =

{
q : q(Z) =

∏
i

qi(Zi)

}
(4.5)

which result in a mean-field approximation.

Application to the SBM.

Proposition 4.1 In the stochastic block-model (4.1) with approximate conditional distribution
q chosen in Qfact, the solution of the VE step satisfies the fix-point relation

τik ∝ πk
∏
j 6=i

∏
`

f(Yij ; γk`)
τj`

where τik = Eq(Zik).

Proof: The complete likelihood of the SBM (4.1) is given by

log pθ(Y,Z) =
∑
i,k

Zik log πk +
∑
i<j

∑
k,`

ZikZj` log f(Yij ; γk`).

Because of (4.4), it is equivalent to minimize the KL divergence KL[q(Z)||p(Z|Y )] and to max-
imize the lower bound. Since q is chosen in Qfact, we have

q(Z) =
∏
i

qi(Zi) =
∏
i

∏
k

τZikik where τik = EqZik,

so

H[q(Z)] =
∑
i

H[qi(Zi)] = −
∑
i

∑
k

τik log τik

and Eq[ZikZj`] = τikτj` for k 6= `.

We now have to maximize the lower bound Eq[log pθ(Y,Z)] +H[q(Z)] =∑
i,k

τik log πk +
∑
i<j

∑
k,`

τikτj` log f(Yij ; γk`)−
∑
i

∑
k

τik log τik

with respect to the τik’s, subject to
∑

k τik = 1 for all i. The derivative with respect to τik is
zero iff

log πk +
∑
j 6=i

∑
`

τj` log f(Yij ; γk`)− log τik − 1− λi = 0

(where λi is the Lagrange multiplier for the constraint
∑

k τik− 1 = 0), which proves the propo-
sition. �
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Remark. In the SBM, denoting Zi = {Zj , j 6= i}, we have

P (Zi = k|Y,Zi) =
P (Zi = k, Y |Zi)

p(Y |Zi)
=
p(Y |Zi = k)P (Zi = k)

p(Y |Zi)
∝ πk

∏
j 6=i

∏
`

f(Yij ; γk`)
Zj` .

The mean-field approximation can be viewed as a simple plug-in of the (approximate) mean
τj` = EqZj` in place of Zj`. This gives the name of the approximation: when considering one
individual, the other elements of the field (i.e. the other individuals) are set to their respective
means.

4.2.3 Properties of variational estimates

Not much is known about the general properties of variational estimates θ̂V . As they are not
maximum likelihood estimates, they do not benefit from the general likelihood theory and, for
example, their asymptotic variance is not this given by Proposition 2.9. From a general point of
view, Gunawardana and Byrne (2005) showed that the VEM algorithm converges to an optimum
that differs from the maximum likelihood estimates: θ̂V 6= θ̂ML. Mean field approximations have
also been studied in statistical physics, e.g. Opper and Winther (2001) who showed that it is
asymptotically exact for models with ’infinite range dependency’. Some more precise results
have been recently obtained in the case of the SBM by Celisse et al. (2012), Bickel et al. (2013)
or Mariadassou and Matias (2015), who proved the consistency of θ̂V for SBM.

An intuition of this can obtained looking at the distribution of the degree of a node (i.e.
its number of neighbors). Indeed, conditionally on Zi = k, each edge Yij arising from i has
Bernoulli distribution

(Yij |Zi = k) ∼ B(γk), where γk =
∑
`

π`γk`,

so the degree Di of this node has a conditional binomial distribution

Di =
∑
j 6=i

Yij , (Di|Zi = k) ∼ B(n− 1, γk).

As a consequence, the degrees of all nodes from the same group k concentrate around their
common mean (n− 1)γk at an exponential rate given by Hoeffding’s inequality:

P

(∣∣∣∣ Di

n− 1
− γk

∣∣∣∣ ≥ t) ≤ 2e2(n−1)t2 ,

which makes the classification of the nodes asymptotically easy.

4.2.4 Alternative approximations and inference strategies

Composite likelihood. Another general approach to deal with complex dependency struc-
tures is to use composite likelihoods, which consist in the linear combination of likelihoods of
sub-groups of variables

CLθ(Y ) =
∑
C

wC log pθ(YC), where YC = (Yi)i∈C .

that can be jointly optimized to get

θ̂CL = arg max
θ
CLθ(Y ).
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Varin et al. (2011) present a general introduction to these approaches, including general results
on the asymptotic variance and distribution of maximum composite likelihood estimates θ̂CL.
Some connexions between variational approximations and composite likelihoods are studied by
Lyu (2011). Composite likelihood estimates are considered for SBM by Ambroise and Matias
(2012).

Expectation propagation. Other lower bounds than the one given in Proposition 2.5 can
be considered. Indeed, any divergence can be removed from the log-likelihood to get a lower
bound. For example, a message passing version of EM can be obtained by simply inverting the
roles of the distribution in KL divergence:

log p(Y ) ≥ log p(Y )−KL[p(Z|Y )||q(Z)].

A series of such alternatives are presented (and compared) in Minka (2005). To our knowledge,
none of these alternatives give raise to tractable computations for SBM.
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5 Bayesian inference: Variational Bayes approximations

5.1 A (very brief) reminder on Bayesian inference

In a Bayesian context, the parameter θ itself is supposed to be random and the aim of inference is
to evaluate its conditional distribution given the observations (also called posterior distribution):

p(θ|Y ) =
p(θ)p(Y |θ)
p(Y )

(5.1)

where

• p(θ) is the marginal distribution of the parameter (also called prior distribution, possibly
depending on some given hyperparameters);

• p(Y |θ) is the likelihood function, which was denoted pθ(Y ) in the frequentist setting;

• p(Y ) is the marginal distribution of the data

p(Y ) =

∫
p(θ)p(Y |θ) dθ

that may be difficult to compute in practice.

The evaluation of the posterior distribution (5.1) is the central task of Bayesian inference (see
e.g. Marin and Robert (2007)). For latent variable models; this often moves to the evaluation
of the joint conditional distribution

p(θ, Z|Y ) = p(θ)p(Z|θ)p(Y |θ, Z)/p(Y ).

Three main strategies exist to achieve such a tasks.

Exact derivation. In some very specific cases, such as the exponential family / conjugate prior
framework (see Section 5.1.1 below and Appendix A.2), p(θ|Y ) can be derived explicitly.
Still this situation is limited to rather simple models. In many cases, neither p(θ|Y ) nor
(θ, Z|Y ) can be derived in a close-form, nor computed in an exact manner.

Sampling. A huge literature is dedicated to stochastic algorithms, such as Monte-Carlo Markov
chains (MCMC), that aim at sampling in these conditional distributions. This topic is out
of the scope of this course.

Approximation. The rest of this chapter is dedicated to methods that aim at deriving ap-
proximate distributions q(θ) ≈ p(θ|Y ) or q(θ, Z) ≈ p(θ, Z|Y ) using variational techniques.

5.1.1 Case of the exponential family.

In the special case of the exponential family (see Definition 2.3 p.15), the posterior distribution
can be obtained in a close form, provided that a conjugate prior distribution is used for the
parameters.

Proposition 5.1 If the likelihood of the observed variable belongs to the exponential family with
canonical parameter θ

p(Y |θ) = exp[θᵀt(Y )− a(Y )− b(θ)]
and if the parameter θ has conjugate prior distribution with hyper-parameters ν and η:

p(θ) = exp[θᵀν − c(ν, η)− ηb(θ)],

then its posterior distribution is the same as the prior distribution with parameters ν+ t(Y ) and
η + 1:

p(θ|Y ) = exp[θᵀ(ν + t(Y ))− c(ν, η + 1)− (η + 1)b(θ)].
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The proof is given in Appendix A.2.

5.1.2 Latent variable models.

In the presence of hidden variable, the purpose of Bayesian inference is still to know the condi-
tional distribution of the parameter but, in the perspective of classification we are also interested
in the conditional distribution of the hidden variables. We are therefore interested in the joint
conditional distribution

p(θ, Z|Y ).

Figures 4.4 and 5.1 present the graphical models for the Bayesian versions of both the mixture
model (2.1) p.9 and the stochastic block-model (4.1). The moralization of these graphs leads to
an intricate dependency structure between the parameter θ and the hidden variable Z so that,
even for the simple independent mixture model, the joint conditional distribution can not be
calculated in a close form to get an exact algorithm. The aim of variational Bayes inference is
to provide an approximation q of the distribution of interest

q(θ, Z) ≈ p(θ, Z|Y ),

namely
q̃(θ, Z) = arg min

q∈Q
KL[q(θ, Z)||p(θ, Z|Y )]. (5.2)

Lower bound of the marginal likelihood p(Y ). Note that solving the optimization problem
(5.2) is equivalent to maximize the lower bound of log p(Y ):

log p(Y ) ≥ log p(Y )−KL[q(θ, Z)||p(θ, Z|Y )]

= Eq [log p(θ, Z, Y )− log q(θ, Z)] . (5.3)

Because this lower bound writes as an expectation according to the approximate distribution q,
it is hopefully computable in many situations.

Z1 Z2

Z3 Z4

π

Y12

Y13

Y14Y23

Y24

Y34γ

Figure 5.1: Graphical representation of the Bayesian stochastic block-model. Arrows from
hidden (Zi) to observed (Yij) variables are dashed to preserve clarity of the figure, but have the
same status as solid arrows.
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5.2 A first example: Bayesian logistic regression inference

Jaakkola and Jordan (2000) exemplify variational Bayes inference on a classical model that does
not involve any latent variable: logistic regression. The model is the following: we consider n
(i = 1 . . . n) individuals for which both a vector of covariates xi and a binary response Yi are
observed. The aim is to study the effects of the covariates on the response, encoded in a vector
of regression coefficients θ. Given the parameter θ the logistic regression model writes:

{Yi}|θ iid ∼ B[g(xᵀi θ)], where g(u) = 1
/(

1 + e−u
)
,

and g is the canonical link function (see Dobson (1990)). In a Bayesian framework, we also need
to define a prior (i.e. marginal) distribution for the parameter θ, which can typically be taken
as Gaussian:

θ ∼ N (m,G−1)

where G is the (prior) precision matrix of θ, that is the inverse of its variance matrix.

Likelihood and posterior distribution. The likelihood of the observation is defined are
their joint conditional distribution given the parameter and writes

p(Y |θ) =
∏
i

p(Yi|θ) =
∏
i

g(xᵀi θ)
Yi [1− g(xᵀi θ)]

1−Yi

so

log p(Y |θ) =
∑
i

Yi log g(xᵀi θ) + (1− Yi) log[1− g(xᵀi θ)]

=
∑
i

(Yi − 1)xᵀi θ + log g(xᵀi θ).

because 1−g(u) = e−ug(u). Now, the posterior distribution of θ is proportional to p(θ, Y ) where

log p(θ, Y ) = log p(θ) log p(Y |θ)

= −1

2
‖θ −m‖2G +

∑
i

(Yi − 1)xᵀi θ + log g(xᵀi θ) +
1

2
log |G|+ cst. (5.4)

No classical (log-)distribution for θ can be recognized here. In particular, as (5.4) is not quadratic
in θ, the (exact) posterior distribution of θ is not Gaussian.

A lower bound. Jaakkola and Jordan (2000) observe that in (5.4) the first term is quadratic
in θ, the second is linear so all difficulties come from the last term, which involves log g(u) that
writes

log g(u) = − log(1 + e−u) =
u

2
+
(
eu/2 + e−u/2

)
and that the function f(u) = (eu/2 + e−u/2) is convex in u2, so that it is always above its
quadratic tangent:

∀w, u, f(u) ≥ f(w) + λ(w)(u2 − w2), where λ(w) = ∂w2f(w).
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Approximate Gaussian posterior. Setting u to xᵀi θ for each i, we end-up with a quadratic
lower bound of log p(θ, Y ) depending on the variational parameters w = (wi):

log p(θ, Y ) ≥ −1

2
‖θ −m‖2G +

∑
i

[
(Yi − 1)xᵀi θ +

xᵀi θ

2
+ λ(wi)(θ

ᵀxix
ᵀ
i θ − w

2
i )

]
+

1

2
[log |G| − d log(2π)] .

The quadratic and linear terms in θ can be re-organized as

log p(θ, Y ) ≥ −1

2
θᵀ

[
G+ 2

∑
i

λ(wi)xix
ᵀ
i

]
θ +

[
Gm+

∑
i

(
Yi −

1

2

)
xi

]ᵀ
θ

+
∑
i

λ(wi)w
2
i −

1

2

[
‖m‖2G − log |G|+ d log(2π)

]
so that, taking

G̃(w) = G+ 2
∑
i

λ(wi)xix
ᵀ
i G̃(w) = G̃(w)−1

[
Gm+

∑
i

(
Yi −

1

2

)
xi

]

we get the lower bound

log p(θ, Y ) ≥ log qw(θ) +
∑
i

λ(wi)w
2
i −

1

2

[
‖m‖2G − log |G| − ‖m̃(w)‖2

G̃(w)
+ log |G̃(w)|

]
, (5.5)

where qw stands for the Gaussian distribution N (m̃(w), G̃(w)), to be used as an approximate
posterior.

Maximizing the lower bound. As (5.5) hold for any w, the lower bound can be maximized
wrt the variational parameter w so to get the optimal variational approximation of this form. The
complete procedure is described in the aforementioned article by Jaakkola and Jordan (2000).
Note that, in this case, the optimization is still achieved wrt a finite dimensional parameter, i.e.
w.

5.3 Variational Bayes EM inference

5.3.1 A (very brief) reminder on calculus of variations

In the following, the approximate distribution q will be defined as the minimizer of an integral.
To find it, we need to define the equivalent of a derivative for functionals (see Frigyik et al. (2008)
for an introduction). The following proposition gives a characterization of such a minimizer.

Proposition 5.2 The function q that minimizes the functional

F(q) =

∫
L(x, q(x)) dx.

satisfies the Euler-Lagrange differential equation:

∂q(x)L(x, q(x)) = 0.
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Proof: q is a maximizer of F(q) if, for any direction h, the derivative of F(q) in direction h is
zero, i.e.

∀h, ∂tF(q + th)|t=0 = 0.

Under regularity conditions, we can move the derivative into the integral so

∂tF(q + th) =

∫
∂tL(x, q(x) + th(x)) dx

=

∫
h(x)L(x, q(x) + th(x)) dx

which is, at t = 0, ∫ [
∂q(x)L(x, q(x))

]
h(x) dx.

The fundamental lemma of calculus of variations states that

∀h,
∫
f(x)h(x) dx = 0 ⇒ f = 0

which completes the proof. �

5.3.2 Variational Bayes EM algorithm

We now introduce the variational Bayes EM (VBEM) algorithm as introduced by Ghahramani
and Beal (2001) (and Beal and Ghahramani (2003)), which aims at retrieving the solution of
(5.2), for

Q = {q(Z, θ) = qZ(Z)qθ(θ)}. (5.6)

A tutorial on variational Bayes inference can be found in Fox and Roberts (2012).

Optimal qZ and qθ. We have to maximize F(q) = F(qZqθ) with respect to both qZ and qθ
that play completely symmetric roles in the optimization problem (5.2).

Proposition 5.3 The minimizer q̃Z of the functional

F(qZ) = KL[qZ(Z)qθ(θ)||p(θ, Z|Y )]

satisfies
q̃Z(Z) ∝ Eqθ [log p(Y, Z, θ)] .

Proof: The optimization problem can be casted into the framework of Proposition 5.2, taking

L(Z, qZ) = qZ(Z)

∫
qθ(θ) log

p(Y,Z, θ)

qZ(Z)qθ(θ)
dθ

= qZ(Z)

∫
qθ(θ) log p(Y,Z, θ) dθ

−qZ(Z)

∫
qθ(θ) log qθ(θ) dθ − qZ(Z)

∫
qθ(θ) log qZ(Z) dθ.

The solution must satisfy

∂qZ(Z)L(Z, qZ(Z)) =

∫
qθ(θ) log p(Y,Z, θ) dθ −

∫
qθ(θ) log qθ(θ) dθ

−[log qZ(Z) + 1]

∫
qθ(θ) dθ

= 0
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that is

log q̃Z(Z) =

∫
qθ(θ) log p(Y,Z, θ) dθ + cst, (5.7)

so

q̃Z(Z) ∝ exp

∫
qθ(θ) log p(Y,Z, θ) dθ. (5.8)

�

Similarly, it is easy to show that

q̃θ(θ) ∝ EqZ [log p(Y,Z, θ)]

so the two optimal distributions q̃Z and q̃θ depend on each other.

Remarks.

1. The optimal solution is a mean-field approximation, since the approximate conditional
distribution qZ is the mean of the complete-data log-likelihood averaged according to qθ.

2. The distribution qZ must satisfy
∫
qZ(Z) dZ = 1 (idem for qθ). Adding this constraint to

the optimization problem is equivalent to take

L(Z, qZ) = qZ(Z)

[∫
qθ(θ) log

p(Y,Z, θ)

qZ(Z)qθ(θ)
dθ + λ

]
so (5.7) still holds, and (5.8) is unchanged.

Conjugate exponential case. In the case of exponential emission distribution with conju-
gate prior, Beal and Ghahramani (2003) derived explicit formula for the optimal approximate
distributions.

Proposition 5.4 If the following conditions are fulfilled:

(i) the distribution p(Y,Z|θ) belongs to the exponential family:

p(Y,Z) = exp[θᵀt(Y,Z)− a(Y,Z)− b(θ)],

(ii) the prior distribution p(θ) is conjugate

p(θ) = exp[θᵀν − c(ν, η)− ηb(θ)],

the distribution q̃(θ, Z) = q̃θ(θ)q̃Z(Z) that minimizes KL[q(θ, Z)||p(θ, Z|Y )] satisfies:

q̃θ(θ) = exp{θᵀν̃ − c(ν̃, η̃)− η̃b(θ)}

where t(Y ) =
∫
q̃Z(θ)t(Y,Z), ν̃ = ν + t(Y ), η̃ = η + 1 and

q̃Z(Z) ∝ exp
{
θ
ᵀ
t(Y,Z)− a(Y,Z)

}
.

where θ =
∫
q̃θ(θ)θ dθ.
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Proof: Under conditions (i) and (ii), the joint distribution of Z, Y and θ is

p(Y, Z, θ) = exp{θᵀ[ν + t(Y )]− a(Y,Z)− (η + 1)b(θ)}.

When applying (5.8) to qθ, exp[−a(Y,Z)] is a constant so

q̃θ(θ) ∝ exp

∫
q̃Z(Z) log (exp{θᵀ[ν + t(Y, Z)]} − (η + 1)b(θ)) dZ

= exp

{
θᵀ
[
ν +

∫
q̃Z(Z)t(Z, Y ) dZ

]
− (η + 1)b(θ)

}
.

When the same is applied to q̃Z , exp[−(η + 1)b(θ)] is a constant so

q̃Z(Z) ∝ exp

∫
q̃θ(θ) log [exp{θᵀt(Y,Z)− a(Y,Z)}] dθ

= exp

{[∫
q̃θ(θ)θ dθ

]ᵀ
t(Y, Z)− a(Y,Z)

}
.

�

This results leads to the following VBEM algorithm.

Algorithm 5.1 The variational Bayes EM algorithm consists in alternative updates of q̃θ and
q̃Z :

E step: update q̃θ as

qh+1
θ (θ) = exp{θᵀ[t

h
(Y ) + ν]− c[th(Y ) + ν, 1 + η]− (η + 1)b(θ)};

M step: update q̃Z as

qh+1
Z (Z) ∝ exp

{(
θ
h+1
)ᵀ
t(Y, Z)− a(Y,Z)

}
.

5.3.3 Example: Poisson mixture model

Consider a Poisson mixture model with the conjugate prior distributions given in (4.2). More
precisely

π ∼ D(a) : p(π) = Γ

(∑
k

ak

)∏
k

[
πak−1
k /Γ(ak)

]
,

(γk) indep. ∼ Gam(bk, ck) : p(γk) = γbk−1
k exp(−ckγk)cbkk /Γ(bk).

so
log p(θ) =

∑
k

(ak − 1) log πk + (bk − 1) log γk − ckγk := θᵀν − c(ν, η)− ηb(θ) + cst

where
θ = [ (log πk)k (log γk)k (−γk)k ],
ν = [ (ak − 1)k (bk − 1)k (ck)k ].

The complete likelihood is

log p(Y,Z|θ) =
∑
i,q

Zik [log πk + Yi log γk − γk − log(Yi!)] =: θᵀu(Y, Z)− a(Y,Z),
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where
u(Y, Z) = [ (

∑
i Zik)k (

∑
i ZikYi)k (

∑
i Zik)k ].

So we get the following update formula for q̃θ

q̃θ(θ) ∝ exp {θᵀ[ν + u(Y )]}

with
u(Y ) = [ (

∑
i τik)k (

∑
i τikYi)k (

∑
i τik)k ],

and

ν̃ = [ (ãk − 1)k (̃bk − 1)k (c̃k)k ].

where
ãk = ak +

∑
i

τik, b̃k = bk +
∑
i

τikYi, c̃k = ck +
∑
i

τik;

and for q̃Z :

q̃Z(Z) ∝ exp
{
θ
ᵀ
t(Y, Z)− a(Y,Z)

}
where (using Lemma A.1, p.59)

θ = [ (ψ0(ãk)− ψ0 (
∑

` ã`))k

(
ψ0(b̃k)− log(c̃k)

)
k

(
−b̃k/c̃k

)
k

].

Note that we also have

q̃Z(Z) ∝ exp

{
θ
ᵀ

[∑
i

t(Yi, Zi)

]
−
∑
i

a(Yi, Zi)

}
∝

∏
q̃Zi(Zi)

where q̃Zi(Zi) ∝
∑
k

Zik log τik

where

τik ∝ exp

{
ψ0(ãk)− ψ0

(∑
`

ã`

)
+ Yi

[
ψ0(b̃k)− log(c̃k)

]
− b̃k/c̃k

}
,

subject to
∑

k τik = 1.

5.4 (Variational) Bayesian model selection or averaging

In many situations, several models can be considered to analyze a given dataset. A typical case
is the series models with K = 1, 2, ... hidden states. In this section we shall denote (MK)K≥1

the set of models at hand. In this situation two approaches can be considered:

Model selection, that is to find the ’best’ model among the list or

Model averaging, that is to combine the predictions of all models, without choosing any
specific one.

Both problems can be stated in a Bayesian way, considering the model as an additional pa-
rameter. This amounts to cast all models into a larger one defined by the following series of
(conditional) distributions:

p(K) = prior distribution on the models;

p(θ|K) = conditional prior of the parameters given model MK ;

p(Z|θ,K) = conditional distribution of the latent variables given the parameters

(and the model);

p(Y |Z, θ,K) = conditional distribution of the observed variables given all the rest.
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For both model selection and model averaging, the critical quantity to evaluate is the pos-
terior probability of each model, that is

p(K|Y ) =

∫∫
p(Z, θ,K|Y ) dZ dθ. (5.9)

Model selection: the best’ model among the list can be defined as most probable conditionally
on the date:

K̂ = arg max
k

P (K = k|Y ),

which is the rational of the BIC criterion (Schwarz (1978)).

Model averaging: the posterior distribution of any function of interest ∆ = h(θ) can be
obtained as

p(∆|Y ) =
∑
K

p(K|Y )p(∆|Y,K)

where p(∆|Y,K) is the posterior distribution of ∆ for model K (see Hoeting et al. (1999)
for a general introduction).

Indeed, the calculation pf p(K|Y ) is often complex, not to say impossible, but a variational
approximation of it can be derived using an easy-to-handle joint distribution q(Z, θ,K) which
approximates p(Z, θ,K|Y ). This is actually doable with no additional approximation that this
made in the variational Bayes inference described in Section ??, that is to assume that, the
approximate conditional distribution q(θ, Z|L) belongs to same class Q as this considered for
VBEM (for example this given by (5.6)) for model MK . More specifically, we consider distribu-
tions q in the following class:

Q = {q(Z, θ,K) : ∀K, q(θ, Z|K) ∈ Q}. (5.10)

Volant et al. (2012) derive the general form of the variational Bayes approximation of p(K|Y ).

Proposition 5.5 The joint distribution

q̃ = arg min
q∈Q

KL [q(Z, θ,K)||p(Z, θ,K|Y )]

satisfies
q̃(θ, Z|K) = arg min

q∈QK
KL [q(θ, Z)||p(Z, θ|Y,K)]

and, denoting KL∗K = KL [q̃(θ, Z|K)||p(Z, θ|Y,K)],

q̃(K) ∝ p(K|Y )e−KL
∗
K

∝ p(K) exp
{
Eq̃θ,Z|K

[
log p(Y,Z, θ|K)− log q̃θ,Z|K(θ, Z)

]}
Proof: The KL divergence between q(Z, θ,K) and p(Z, θ,K|Y ) is

KL = Eq [log q(Z, θ,K)− log p(Z, θ,K|Y )]

= Eq [log q(Z, θ|K)− log p(Z, θ|Y,K) + log q(K)− log p(K|Y )]

=
∑
K

q(K)
{
Eqθ,Z|K [log q(Z, θ|K)− log p(Y,Z, θ|Y,K)] + log q(K)− log p(K|Y )

}
=

∑
K

q(K) {KL [q(θ, Z|K)||p(Z, θ|Y,K)] + log q(K)− log p(K|Y )} .
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Now, we first minimize wrt q(θ, Z|K) to get

min
q∈QK

KL = min
q

(
min

qθ,Z|K∈QK
KL

)
= min

q

∑
K

q(K) {KL∗K + log q(K)− log p(K|Y )} .

The optimal distribution q̃(K) is obtained but setting the derivatives of this wrt to each q(K)
to zero (under the constraint that

∑
K q(K) = 1). We get

∂q(K)KL− λ

(∑
K

q(K)− 1

)
= KL∗K + log q(K)− log p(K|Y )− λ

which is zero iff
q(K) ∝ p(K|Y )e−KL

∗
K . (5.11)

To get the second formulation, we observe that

p(K|Y )e−KL
∗
K = p(K) exp [log p(Y |K)−KL∗K ] /p(Y )

= p(K) exp
{
Eq̃θ,Z|K

[
log p(Y,Z, θ|K)− log q̃θ,z|K(θ, z)

]}
where we recognize the lower bound (5.3) for model MK to get the last equality. �

Remarks.

1. Formula (5.11) is not directly computable as neither p(K|Y ) not e−KL
∗
K are. Still, it has

an intuitive interpretation in the sense that the approximate conditional probability of
model MK is proportional to both

• the true posterior probability of the model p(K|Y ), which is the quantity we were
primarily interested in, and

• a correction term e−KL
∗
K which can be seen as a penalization for a poor quality of

the VB approximation in model MK .

2. We stress that integrating the model as an additional missing variable does not require
any additional approximation. The proximity between q̃(K) and p(K|Y ) is completely
ruled by the quality of the VB approximation for each model.

Variational Bayes model selection. The VB approximation of p(K|Y ) can be used for
model selection, taking

M̂ = M
K̂

where K̂ = arg max
K

q̃(K).

Variational Bayes model averaging. Similarly a variation approximation of the posterior
expectation of any parameter of interest ∆ = h(θ, Z) is given by

Ẽ(∆) =
∑
K

q̃(K)Eq̃θ,Z|K (∆).
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5.5 Sampling in the Posterior distribution

The aim of variational Bayes inference is to provide a distribution q̃θ(θ) that approximates the
true posterior distribution of the parameters p(θ|Y ):

q̃θ(θ) ≈ p(θ|Y ).

Bayesian parameter inference, typically requires the determination of credibility intervals

C1−α = [a; b], such that

∫
C1−α

p(θ|Y ) dθ = 1− α.

More generally, we are interested in the evaluation of integral of the form∫
p(θ|Y )h(θ) dθ.

As q̃θ is only an approximation, the approximation of such integrals may be poor when replacing
p(θ|Y ) with q̃θ(θ). Indeed, the variational approximation is known to provide accurate estimate
for the posterior mode (see Minka (2005)) but to underestimate the posterior variance (see
Bishop and Nasrabadi (2006)).

Importance sampling. Monte Carlo techniques allow to evaluate such integrals as∫
p(θ|Y )h(θ) dθ ≈ 1

B

∑
b

h(θb) with {θb} iid ∼ p(θ|Y ).

In latent variable models sampling under p(θ|Y ) is not possible, but the computation of p(Y |θ)
is possible. The above sampling scheme can be modified, remarking that∫

p(θ|Y )h(θ) dθ ∝
∫
p(θ)p(Y |θ)

q(θ)
q(θ)h(θ) dθ =

∫
wq(θ)q(θ)h(θ) dθ,

denoting wq(θ) = p(θ)p(Y |θ)/q(θ), so that∫
p(θ|Y )h(θ) dθ ≈ C−1

∑
b

wq(θ
b)h(θb) with {θb} iid ∼ q(θ)

where the normalizing constant is evaluated by

C =
∑
b

wq(θ
b) with {θb} iid ∼ q(θ).

The accuracy of such an estimate relies of the proximity between the proposal distribution q(θ)
and the target distribution p(θ|Y ). The variational posterior q̃θ can be used as a proxy.
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A Some useful tools

A.1 Graphical models

Definition A.1 A directed graphical model is a directed acyclic graph (DAG) G = (V,E) where

• the set of vertices V is the set of all the random variables involved in the model:

V := Y = {Yj}

• the joint distribution of all variables can be factorized as

pθ(Y ) =
∏
j

pθ(Yj |Ypar(j))

where Ypar(j) stands for the (possibly empty) set of parents of Yj in G:

Ypar(j) = {Yi : (i, j) ∈ E}.

Definition A.2 An undirected graphical model is an unoriented graph G = (V,E) where

• the set of vertices V is the set of all the random variables involved in the model:

V := Y = {Yj}

• the joint distribution of all variables can be factorized as

pθ(Y ) =
1

κ(θ)

∏
c∈C(G)

f cθ (Yc)

where C(G) stands for the set of all maximal cliques of G and Yc stands for the set of
vertices (variables) in clique c.

Remark. The functions f cθ from Definition A.2 are generally not pdf and the normalizing con-
stant κ(θ) ensures that pθ(Y ) is a pdf.

A.2 Exponential family

A.2.1 Maximum likelihood inference

Proof of Proposition 2.6. Remind that the moment generating function of a rv V is defined
as m(z) = E[ez

ᵀV ] and satisfies m′(0) = E(V ). For the exponential family, consider the moment
generating function of the sufficient statistics

m(z) := E[ez
ᵀt(Y )] =

∫
ez

ᵀt(y)pθ(y) dy =

∫
exp[(z + θ)ᵀt(y)− a(y)− b(θ)] dy.

Because pθ is a pdf, eb(θ) is a normalizing constant, we have that∫
exp[θᵀt(y)− a(y)] dy = eb(θ)

so ∫
exp[(z + θ)ᵀt(y)− a(y)] dy = eb(z+θ)

and

m(z) = e−b(θ)
∫

exp[(z + θ)ᵀt(y)− a(y)] dy = eb(z+θ)−b(θ).

The result follows from the fact that m′(z) = b′(θ + z)eb(z+θ)−b(θ) so m′(0) = b′(θ). �
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Proof of Proposition 2.7. Take the derivative of the log-likelihood∑
i

log p(Yi; θ) =
∑
i

[θᵀt(Yi)− a(Yi)]− nb(θ)

with respect to θ. �

A.2.2 Bayesian inference

Proof of Proposition 5.1. It suffices to note that, as p(θ) is a probability distribution, we
have

exp[c(ν, η)] =

∫
exp[θᵀν − ηb(θ)] dθ.

So ∫
p(θ)p(Y |θ) dθ =

∫
exp[θᵀ(ν + t(Y ))− c(ν, η)− (η + 1)b(θ)− a(Y )] dθ

= exp[−c(ν, η)− a(Y )]

∫
exp[θᵀ(ν + t(Y ))− (η + 1)b(θ)] dθ

= exp[−c(ν, η)− a(Y )] exp[c(ν + t(Y ), η + 1)].

The term exp[−c(ν, η)− a(Y )] then vanishes in the ratio (5.1). �

Lemme A.1 If π ∼ D(a) and γ ∼ Gam(b, c), then

E(log πk) = ψ0(ak)− ψ0

(∑
`

a`

)
, E(γ) =

b

c
, E(log γ) = ψ0(b)− log(c)

where ψ0 is the first derivative of the Γ function, known as the di-gamma function.

A.3 Latent variable models

A.3.1 Asymptotic variance

Proof of Proposition 2.9. First remind that, for a generic incomplete data model,

pθ(Y ) =

∫
pθ(Y,Z) dZ.

Similarly to Sθ(Y ) and S′θ(Y ), we denote

Sθ(Y,Z) = ∂θ log pθ(Y, Z) S′θ(Y,Z) = ∂2
θ2 log pθ(Y, Z)

and p′θ (resp. p′′θ) the first (resp. second) derivative of pθ with respect to θ. First, we have

Sθ(Y ) =
p′θ(Y )

pθ(Y )
=

∫
p′θ(Y,Z) dZ

pθ(Y )
(A.1)

=

∫
pθ(Y, Z)Sθ(Y, Z) dZ

pθ(Y )
(because ∂xf(x) = f(x)∂x log f(x))

=

∫
pθ(Z|Y )Sθ(Y, Z) dZ = E [Sθ(Y, Z)|Y ] .
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Then we have

S′θ(Y ) = ∂2
θ2 log pθ(Y ) =

pθ(Y )p′′θ(Y )− (p′θ(Y ))(p′θ(Y ))ᵀ

p2
θ(Y )

(A.2)

=

∫
∂2
θ2pθ(Y, Z) dZ

pθ(Y )
−
(
p′θ(Y )

pθ(Y )

)(
p′θ(Y )

pθ(Y )

)ᵀ

Because of (A.1), we have that(
p′θ(Y )

pθ(Y )

)(
p′θ(Y )

pθ(Y )

)ᵀ

= E [Sθ(Y,Z)|Y ]E [Sθ(Y, Z)|Y ]ᵀ .

Furthermore, because

∂2
x2f(x) = f(x)∂2

x2 log f(x) + f(x)(∂ log f(x))(∂ log f(x))ᵀ,

we have that∫
∂2
θ2pθ(Y,Z) dZ

pθ(Y )
=

∫
pθ(Y,Z)

pθ(Y )
S′θ(Y,Z) dZ +

∫
pθ(Y,Z)

pθ(Y )
Sθ(Y, Z)Sθ(Y, Z)ᵀ dZ

= E
[
S′θ(Y, Z)|Y

]
+ E [Sθ(Y,Z)Sθ(Y,Z)ᵀ|Y ] ,

which completes the proof. �
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